Cargando…
Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints
Environmentally assisted cracking (EAC) is essential in predicting light water reactors’ structural integrity and service life. Alloy 600 (equivalent to Inconel 600) has excellent corrosion resistance and is often used as a welding material in welded joints, but material properties of the alloy are...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540284/ https://www.ncbi.nlm.nih.gov/pubmed/34683774 http://dx.doi.org/10.3390/ma14206186 |
_version_ | 1784588949621047296 |
---|---|
author | Zhao, Kuan Wang, Shuai Xue, He Wang, Zheng |
author_facet | Zhao, Kuan Wang, Shuai Xue, He Wang, Zheng |
author_sort | Zhao, Kuan |
collection | PubMed |
description | Environmentally assisted cracking (EAC) is essential in predicting light water reactors’ structural integrity and service life. Alloy 600 (equivalent to Inconel 600) has excellent corrosion resistance and is often used as a welding material in welded joints, but material properties of the alloy are heterogeneous in the welded zone due to the complex welding process. To investigate the EAC crack growth behavior of Alloy 600 for safe-end welded joints, the method taken in this paper concerns the probability prediction of the EAC crack growth rate. It considers the material heterogeneity, combining the film slip-dissolution/oxidation model, and the elastic-plastic finite element method. The strain rate at the crack tip is a unique factor to describe the mechanical state. Still, it is challenging to accurately predict it because of the complicated and heterogeneous material microstructure. In this study, the effects of material heterogeneity on the EAC crack growth behavior are statistically analyzed. The results show that the material heterogeneity of Alloy 600 can not be ignored because it affects the prediction accuracy of the crack growth rate. The randomness of yield strength has the most influence on the EAC growth rate, while Poisson’s ratio has the smallest. |
format | Online Article Text |
id | pubmed-8540284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85402842021-10-24 Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints Zhao, Kuan Wang, Shuai Xue, He Wang, Zheng Materials (Basel) Article Environmentally assisted cracking (EAC) is essential in predicting light water reactors’ structural integrity and service life. Alloy 600 (equivalent to Inconel 600) has excellent corrosion resistance and is often used as a welding material in welded joints, but material properties of the alloy are heterogeneous in the welded zone due to the complex welding process. To investigate the EAC crack growth behavior of Alloy 600 for safe-end welded joints, the method taken in this paper concerns the probability prediction of the EAC crack growth rate. It considers the material heterogeneity, combining the film slip-dissolution/oxidation model, and the elastic-plastic finite element method. The strain rate at the crack tip is a unique factor to describe the mechanical state. Still, it is challenging to accurately predict it because of the complicated and heterogeneous material microstructure. In this study, the effects of material heterogeneity on the EAC crack growth behavior are statistically analyzed. The results show that the material heterogeneity of Alloy 600 can not be ignored because it affects the prediction accuracy of the crack growth rate. The randomness of yield strength has the most influence on the EAC growth rate, while Poisson’s ratio has the smallest. MDPI 2021-10-18 /pmc/articles/PMC8540284/ /pubmed/34683774 http://dx.doi.org/10.3390/ma14206186 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Kuan Wang, Shuai Xue, He Wang, Zheng Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title | Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title_full | Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title_fullStr | Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title_full_unstemmed | Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title_short | Effect of Material Heterogeneity on Environmentally Assisted Cracking Growth Rate of Alloy 600 for Safe-End Welded Joints |
title_sort | effect of material heterogeneity on environmentally assisted cracking growth rate of alloy 600 for safe-end welded joints |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540284/ https://www.ncbi.nlm.nih.gov/pubmed/34683774 http://dx.doi.org/10.3390/ma14206186 |
work_keys_str_mv | AT zhaokuan effectofmaterialheterogeneityonenvironmentallyassistedcrackinggrowthrateofalloy600forsafeendweldedjoints AT wangshuai effectofmaterialheterogeneityonenvironmentallyassistedcrackinggrowthrateofalloy600forsafeendweldedjoints AT xuehe effectofmaterialheterogeneityonenvironmentallyassistedcrackinggrowthrateofalloy600forsafeendweldedjoints AT wangzheng effectofmaterialheterogeneityonenvironmentallyassistedcrackinggrowthrateofalloy600forsafeendweldedjoints |