Cargando…
RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products
To overcome some of the shortfalls of the types of dissolution testing currently used for pulmonary products, a new custom-built dissolution apparatus has been developed. For inhalation products, the main in vitro characterisation required by pharmacopoeias is the deposition of the active pharmaceut...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540329/ https://www.ncbi.nlm.nih.gov/pubmed/34683833 http://dx.doi.org/10.3390/pharmaceutics13101541 |
_version_ | 1784588960803061760 |
---|---|
author | Sonvico, Fabio Chierici, Veronica Varacca, Giada Quarta, Eride D’Angelo, Davide Forbes, Ben Buttini, Francesca |
author_facet | Sonvico, Fabio Chierici, Veronica Varacca, Giada Quarta, Eride D’Angelo, Davide Forbes, Ben Buttini, Francesca |
author_sort | Sonvico, Fabio |
collection | PubMed |
description | To overcome some of the shortfalls of the types of dissolution testing currently used for pulmonary products, a new custom-built dissolution apparatus has been developed. For inhalation products, the main in vitro characterisation required by pharmacopoeias is the deposition of the active pharmaceutical ingredient in an impactor to estimate the dose delivered to the target site, i.e., the lung. Hence, the collection of the respirable dose (<5 µm) also appears to be an essential requirement for the study of the dissolution rate of particles, because it results as being a relevant parameter for the pharmacological action of the powder. In this sense, dissolution studies could become a complementary test to the routine testing of inhaled formulation delivered dose and aerodynamic performance, providing a set of data significant for product quality, efficacy and/or equivalence. In order to achieve the above-mentioned objectives, an innovative dissolution apparatus (RespiCell™) suitable for the dissolution of the respirable fraction of API deposited on the filter of a fast screening impactor (FSI) (but also of the entire formulation if desirable) was designed at the University of Parma and tested. The purpose of the present work was to use the RespiCell dissolution apparatus to compare and discriminate the dissolution behaviour after aerosolisation of various APIs characterised by different physico-chemical properties (hydrophilic/lipophilic) and formulation strategies (excipients, mixing technology). |
format | Online Article Text |
id | pubmed-8540329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85403292021-10-24 RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products Sonvico, Fabio Chierici, Veronica Varacca, Giada Quarta, Eride D’Angelo, Davide Forbes, Ben Buttini, Francesca Pharmaceutics Article To overcome some of the shortfalls of the types of dissolution testing currently used for pulmonary products, a new custom-built dissolution apparatus has been developed. For inhalation products, the main in vitro characterisation required by pharmacopoeias is the deposition of the active pharmaceutical ingredient in an impactor to estimate the dose delivered to the target site, i.e., the lung. Hence, the collection of the respirable dose (<5 µm) also appears to be an essential requirement for the study of the dissolution rate of particles, because it results as being a relevant parameter for the pharmacological action of the powder. In this sense, dissolution studies could become a complementary test to the routine testing of inhaled formulation delivered dose and aerodynamic performance, providing a set of data significant for product quality, efficacy and/or equivalence. In order to achieve the above-mentioned objectives, an innovative dissolution apparatus (RespiCell™) suitable for the dissolution of the respirable fraction of API deposited on the filter of a fast screening impactor (FSI) (but also of the entire formulation if desirable) was designed at the University of Parma and tested. The purpose of the present work was to use the RespiCell dissolution apparatus to compare and discriminate the dissolution behaviour after aerosolisation of various APIs characterised by different physico-chemical properties (hydrophilic/lipophilic) and formulation strategies (excipients, mixing technology). MDPI 2021-09-23 /pmc/articles/PMC8540329/ /pubmed/34683833 http://dx.doi.org/10.3390/pharmaceutics13101541 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sonvico, Fabio Chierici, Veronica Varacca, Giada Quarta, Eride D’Angelo, Davide Forbes, Ben Buttini, Francesca RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title | RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title_full | RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title_fullStr | RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title_full_unstemmed | RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title_short | RespiCell(TM): An Innovative Dissolution Apparatus for Inhaled Products |
title_sort | respicell(tm): an innovative dissolution apparatus for inhaled products |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540329/ https://www.ncbi.nlm.nih.gov/pubmed/34683833 http://dx.doi.org/10.3390/pharmaceutics13101541 |
work_keys_str_mv | AT sonvicofabio respicelltmaninnovativedissolutionapparatusforinhaledproducts AT chiericiveronica respicelltmaninnovativedissolutionapparatusforinhaledproducts AT varaccagiada respicelltmaninnovativedissolutionapparatusforinhaledproducts AT quartaeride respicelltmaninnovativedissolutionapparatusforinhaledproducts AT dangelodavide respicelltmaninnovativedissolutionapparatusforinhaledproducts AT forbesben respicelltmaninnovativedissolutionapparatusforinhaledproducts AT buttinifrancesca respicelltmaninnovativedissolutionapparatusforinhaledproducts |