Cargando…
The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome
Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to lim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540371/ https://www.ncbi.nlm.nih.gov/pubmed/34684271 http://dx.doi.org/10.3390/pathogens10101322 |
_version_ | 1784588971038212096 |
---|---|
author | Nakamya, Mary F. Ayoola, Moses B. Shack, Leslie A. Swiatlo, Edwin Nanduri, Bindu |
author_facet | Nakamya, Mary F. Ayoola, Moses B. Shack, Leslie A. Swiatlo, Edwin Nanduri, Bindu |
author_sort | Nakamya, Mary F. |
collection | PubMed |
description | Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to limit the spread of this pathogen. Pathogenic mechanisms that allow successful adaption and persistence in the host could be potential innovative therapeutic targets. Polyamines are ubiquitous polycationic molecules that regulate many cellular processes. We previously reported that deletion of polyamine transport operon potABCD, which encodes a putrescine/spermidine transporter (ΔpotABCD), resulted in an unencapsulated attenuated phenotype. Here, we characterize the transcriptome, metabolome, and stress responses of polyamine transport-deficient S. pneumoniae. Compared with the wild-type strain, the expression of genes involved in oxidative stress responses and the nucleotide sugar metabolism was reduced, while expression of genes involved in the Leloir, tagatose, and pentose phosphate pathways was higher in ΔpotABCD. A metabolic shift towards the pentose phosphate pathway will limit the synthesis of precursors of capsule polysaccharides. Metabolomics results show reduced levels of glutathione and pyruvate in the mutant. Our results also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. Our findings demonstrate the importance of polyamine transport in pneumococcal physiology that could impact in vivo fitness. Thus, polyamine transport in pneumococci represents a novel target for therapeutic interventions. |
format | Online Article Text |
id | pubmed-8540371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85403712021-10-24 The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome Nakamya, Mary F. Ayoola, Moses B. Shack, Leslie A. Swiatlo, Edwin Nanduri, Bindu Pathogens Article Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to limit the spread of this pathogen. Pathogenic mechanisms that allow successful adaption and persistence in the host could be potential innovative therapeutic targets. Polyamines are ubiquitous polycationic molecules that regulate many cellular processes. We previously reported that deletion of polyamine transport operon potABCD, which encodes a putrescine/spermidine transporter (ΔpotABCD), resulted in an unencapsulated attenuated phenotype. Here, we characterize the transcriptome, metabolome, and stress responses of polyamine transport-deficient S. pneumoniae. Compared with the wild-type strain, the expression of genes involved in oxidative stress responses and the nucleotide sugar metabolism was reduced, while expression of genes involved in the Leloir, tagatose, and pentose phosphate pathways was higher in ΔpotABCD. A metabolic shift towards the pentose phosphate pathway will limit the synthesis of precursors of capsule polysaccharides. Metabolomics results show reduced levels of glutathione and pyruvate in the mutant. Our results also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. Our findings demonstrate the importance of polyamine transport in pneumococcal physiology that could impact in vivo fitness. Thus, polyamine transport in pneumococci represents a novel target for therapeutic interventions. MDPI 2021-10-14 /pmc/articles/PMC8540371/ /pubmed/34684271 http://dx.doi.org/10.3390/pathogens10101322 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nakamya, Mary F. Ayoola, Moses B. Shack, Leslie A. Swiatlo, Edwin Nanduri, Bindu The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title | The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title_full | The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title_fullStr | The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title_full_unstemmed | The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title_short | The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome |
title_sort | effect of impaired polyamine transport on pneumococcal transcriptome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540371/ https://www.ncbi.nlm.nih.gov/pubmed/34684271 http://dx.doi.org/10.3390/pathogens10101322 |
work_keys_str_mv | AT nakamyamaryf theeffectofimpairedpolyaminetransportonpneumococcaltranscriptome AT ayoolamosesb theeffectofimpairedpolyaminetransportonpneumococcaltranscriptome AT shacklesliea theeffectofimpairedpolyaminetransportonpneumococcaltranscriptome AT swiatloedwin theeffectofimpairedpolyaminetransportonpneumococcaltranscriptome AT nanduribindu theeffectofimpairedpolyaminetransportonpneumococcaltranscriptome AT nakamyamaryf effectofimpairedpolyaminetransportonpneumococcaltranscriptome AT ayoolamosesb effectofimpairedpolyaminetransportonpneumococcaltranscriptome AT shacklesliea effectofimpairedpolyaminetransportonpneumococcaltranscriptome AT swiatloedwin effectofimpairedpolyaminetransportonpneumococcaltranscriptome AT nanduribindu effectofimpairedpolyaminetransportonpneumococcaltranscriptome |