Cargando…

Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)

The rise of coronavirus (COVID-19) cases worldwide has driven the need to discover and develop novel therapeutics with superior efficacy to treat this disease. This study aims to develop an innovative aerosolized nano-formulation of favipiravir (FPV) as an anti-viral agent against coronavirus infect...

Descripción completa

Detalles Bibliográficos
Autores principales: Tulbah, Alaa S., Lee, Wing-Hin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540419/
https://www.ncbi.nlm.nih.gov/pubmed/34681283
http://dx.doi.org/10.3390/ph14101059
_version_ 1784588982503342080
author Tulbah, Alaa S.
Lee, Wing-Hin
author_facet Tulbah, Alaa S.
Lee, Wing-Hin
author_sort Tulbah, Alaa S.
collection PubMed
description The rise of coronavirus (COVID-19) cases worldwide has driven the need to discover and develop novel therapeutics with superior efficacy to treat this disease. This study aims to develop an innovative aerosolized nano-formulation of favipiravir (FPV) as an anti-viral agent against coronavirus infection. The local delivery of FPV nanoparticles (NPs) via nebulization ensures that the drug can reach the site of infection, the lungs. Solid lipid NPs of favipiravir (FPV-SLNs) were formulated utilizing the hot-evaporation method. The physicochemical formulation properties were evaluated using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The aerosol formulation performance was evaluated using an Andersen Cascade Impactor (ACI) at a flow rate of 15 L/min. The FPV-SLN formulation’s in vitro anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was also evaluated using the SARS-CoV-2 pathogen (hCoV-19/Egypt/NRC-3/2020 isolate). The FPV-SLNs’ morphology was defined utilizing transmission electron microscopy, showing an irregular shape. By means of FPV-SLNs’ nebulization, a fine particle fraction of 60.2 ± 1.7% was produced with 60.2 ± 1.7%, and this finding suggests that FPV-SLNs were appropriate for inhalation drug delivery with a particle size of 537.6 ± 55.72 nm. Importantly, the FPV-SLNs showed anti-viral activity against SARS-CoV-2 with CC(50) and IC50 values of 449.6 and 29.9 µg/mL, respectively. This study suggests that inhaled solid lipid NPs of favipiravir could potentially be used against coronavirus.
format Online
Article
Text
id pubmed-8540419
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85404192021-10-24 Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs) Tulbah, Alaa S. Lee, Wing-Hin Pharmaceuticals (Basel) Article The rise of coronavirus (COVID-19) cases worldwide has driven the need to discover and develop novel therapeutics with superior efficacy to treat this disease. This study aims to develop an innovative aerosolized nano-formulation of favipiravir (FPV) as an anti-viral agent against coronavirus infection. The local delivery of FPV nanoparticles (NPs) via nebulization ensures that the drug can reach the site of infection, the lungs. Solid lipid NPs of favipiravir (FPV-SLNs) were formulated utilizing the hot-evaporation method. The physicochemical formulation properties were evaluated using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The aerosol formulation performance was evaluated using an Andersen Cascade Impactor (ACI) at a flow rate of 15 L/min. The FPV-SLN formulation’s in vitro anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was also evaluated using the SARS-CoV-2 pathogen (hCoV-19/Egypt/NRC-3/2020 isolate). The FPV-SLNs’ morphology was defined utilizing transmission electron microscopy, showing an irregular shape. By means of FPV-SLNs’ nebulization, a fine particle fraction of 60.2 ± 1.7% was produced with 60.2 ± 1.7%, and this finding suggests that FPV-SLNs were appropriate for inhalation drug delivery with a particle size of 537.6 ± 55.72 nm. Importantly, the FPV-SLNs showed anti-viral activity against SARS-CoV-2 with CC(50) and IC50 values of 449.6 and 29.9 µg/mL, respectively. This study suggests that inhaled solid lipid NPs of favipiravir could potentially be used against coronavirus. MDPI 2021-10-19 /pmc/articles/PMC8540419/ /pubmed/34681283 http://dx.doi.org/10.3390/ph14101059 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tulbah, Alaa S.
Lee, Wing-Hin
Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title_full Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title_fullStr Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title_full_unstemmed Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title_short Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs)
title_sort physicochemical characteristics and in vitro toxicity/anti-sars-cov-2 activity of favipiravir solid lipid nanoparticles (slns)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540419/
https://www.ncbi.nlm.nih.gov/pubmed/34681283
http://dx.doi.org/10.3390/ph14101059
work_keys_str_mv AT tulbahalaas physicochemicalcharacteristicsandinvitrotoxicityantisarscov2activityoffavipiravirsolidlipidnanoparticlesslns
AT leewinghin physicochemicalcharacteristicsandinvitrotoxicityantisarscov2activityoffavipiravirsolidlipidnanoparticlesslns