Cargando…
A Machine Learning Framework for Balancing Training Sets of Sensor Sequential Data Streams
The recent explosive growth in the number of smart technologies relying on data collected from sensors and processed with machine learning classifiers made the training data imbalance problem more visible than ever before. Class-imbalanced sets used to train models of various events of interest are...
Autores principales: | Setiawan, Budi Darma, Serdült, Uwe, Kryssanov, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540530/ https://www.ncbi.nlm.nih.gov/pubmed/34696105 http://dx.doi.org/10.3390/s21206892 |
Ejemplares similares
-
Sequential Learning of Principal Curves: Summarizing Data Streams on the Fly
por: Li, Le, et al.
Publicado: (2021) -
Serving machine learning models: a guide to architecture, stream processing engines, and frameworks
por: Lublinsky, Boris
Publicado: (2017) -
Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework
por: Shen, Longzhu Q., et al.
Publicado: (2020) -
The Metabolic Regimes at the Scale of an Entire Stream Network Unveiled Through Sensor Data and Machine Learning
por: Segatto, Pier Luigi, et al.
Publicado: (2021) -
Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks
por: Rehan, Waqas, et al.
Publicado: (2016)