Cargando…

Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826)

The antifungal and insecticidal effect of the essential oil from Ocimum sanctum L. was evaluated using a model set of harmful organisms hazardous for health and the economy. Toxigenic and plant pathogenic filamentous fungi, including causal agents of human infections, were chosen as exemplary fungal...

Descripción completa

Detalles Bibliográficos
Autores principales: Žabka, Martin, Pavela, Roman, Kovaříková, Kateřina, Tříska, Jan, Vrchotová, Naděžda, Bednář, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540552/
https://www.ncbi.nlm.nih.gov/pubmed/34685990
http://dx.doi.org/10.3390/plants10102180
Descripción
Sumario:The antifungal and insecticidal effect of the essential oil from Ocimum sanctum L. was evaluated using a model set of harmful organisms hazardous for health and the economy. Toxigenic and plant pathogenic filamentous fungi, including causal agents of human infections, were chosen as exemplary fungal groups—Fusarium verticillioides, Penicillium expansum and Aspergillus flavus. Spodoptera littoralis (African cotton leafworm), Culex quinquefasciatus (Southern house mosquito), the lymphatic filariasis vector and potential Zika virus vector, and the common housefly, Musca domestica were chosen as model insects. Major and minor active substances were detected and quantified using GC/MS analysis. Environmental safety was verified using the non-target useful organism Eisenia fetida. Significant antifungal and insecticidal activity, as well as environmental safety, were confirmed. The essential oil showed the highest efficacy against A. flavus according to MIC50/90, and against S. littoralis larvae according to LD(50/90). The monoterpenoid alcohol linalool, t-methyl cinnamate, and estragole as phenylpropanoids were detected as effective major components (85.4%). The essential oil from Ocimum sanctum L. was evaluated as universal and significantly efficient, providing a high potential for use in environmentally safe botanical pesticides.