Cargando…

Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi (Litchi chinensis Sonn.) and Their Involvement in Floral Sex Determination

Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Hongling, Wang, Han, Huang, Jianjun, Liu, Mingxin, Chen, Ting, Shan, Xiaozhen, Chen, Houbin, Shen, Jiyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540616/
https://www.ncbi.nlm.nih.gov/pubmed/34685951
http://dx.doi.org/10.3390/plants10102142
Descripción
Sumario:Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKC(C) -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development.