Cargando…
Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations
SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polyme...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540652/ https://www.ncbi.nlm.nih.gov/pubmed/34681802 http://dx.doi.org/10.3390/ijms222011143 |
_version_ | 1784589038976499712 |
---|---|
author | Jukič, Marko Janežič, Dušanka Bren, Urban |
author_facet | Jukič, Marko Janežič, Dušanka Bren, Urban |
author_sort | Jukič, Marko |
collection | PubMed |
description | SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies. |
format | Online Article Text |
id | pubmed-8540652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85406522021-10-24 Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations Jukič, Marko Janežič, Dušanka Bren, Urban Int J Mol Sci Article SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies. MDPI 2021-10-15 /pmc/articles/PMC8540652/ /pubmed/34681802 http://dx.doi.org/10.3390/ijms222011143 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jukič, Marko Janežič, Dušanka Bren, Urban Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title | Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title_full | Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title_fullStr | Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title_full_unstemmed | Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title_short | Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations |
title_sort | potential novel thioether-amide or guanidine-linker class of sars-cov-2 virus rna-dependent rna polymerase inhibitors identified by high-throughput virtual screening coupled to free-energy calculations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540652/ https://www.ncbi.nlm.nih.gov/pubmed/34681802 http://dx.doi.org/10.3390/ijms222011143 |
work_keys_str_mv | AT jukicmarko potentialnovelthioetheramideorguanidinelinkerclassofsarscov2virusrnadependentrnapolymeraseinhibitorsidentifiedbyhighthroughputvirtualscreeningcoupledtofreeenergycalculations AT janezicdusanka potentialnovelthioetheramideorguanidinelinkerclassofsarscov2virusrnadependentrnapolymeraseinhibitorsidentifiedbyhighthroughputvirtualscreeningcoupledtofreeenergycalculations AT brenurban potentialnovelthioetheramideorguanidinelinkerclassofsarscov2virusrnadependentrnapolymeraseinhibitorsidentifiedbyhighthroughputvirtualscreeningcoupledtofreeenergycalculations |