Cargando…
NMR Reveals the Conformational Changes of Cytochrome C upon Interaction with Cardiolipin
Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alia...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540660/ https://www.ncbi.nlm.nih.gov/pubmed/34685404 http://dx.doi.org/10.3390/life11101031 |
Sumario: | Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alias that might come from protein labeling or mutations, the conformation of purified yeast iso–1 cyt c with natural isotopic abundance in different contents of CL was measured by using NMR spectroscopy, in which the trimethylated group of the protein was used as a natural probe. The data demonstrate that cyt c has two partially unfolded conformations when interacted with CL: one with Fe–His33 coordination and the other with a penta–coordination heme. The Fe–His33 coordination conformation can be converted into a penta–coordination heme conformation in high content of CL. The structure of cyt c becomes partially unfolded with more exposed heme upon interaction with CL, suggesting that cyt c prefers a high peroxidase activity state in the mitochondria, which, in turn, makes CL easy to be oxidized, and causes the release of cyt c into the cytoplasm as a trigger in apoptosis. |
---|