Cargando…
Multiscale Enhanced Sampling Using Machine Learning
Multiscale enhanced sampling (MSES) allows for an enhanced sampling of all-atom protein structures by coupling with the accelerated dynamics of the associated coarse-grained (CG) model. In this paper, we propose an MSES extension to replace the CG model with the dynamics on the reduced subspace gene...
Autor principal: | Moritsugu, Kei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540671/ https://www.ncbi.nlm.nih.gov/pubmed/34685447 http://dx.doi.org/10.3390/life11101076 |
Ejemplares similares
-
Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling
por: Moritsugu, Kei, et al.
Publicado: (2014) -
Exploring Configuration Space and Path Space of Biomolecules Using Enhanced Sampling Techniques—Searching for Mechanism and Kinetics of Biomolecular Functions
por: Fujisaki, Hiroshi, et al.
Publicado: (2018) -
Development of a Neurodegenerative Disease Gait Classification Algorithm Using Multiscale Sample Entropy and Machine Learning Classifiers
por: Nam Nguyen, Quoc Duy, et al.
Publicado: (2020) -
Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review
por: Fujisaki, Hiroshi, et al.
Publicado: (2015) -
Multiscale Reweighted Stochastic Embedding: Deep Learning
of Collective Variables for Enhanced Sampling
por: Rydzewski, Jakub, et al.
Publicado: (2021)