Cargando…
Resistance of Common Bean Genotypes to the Broad Mite, Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae): Offspring Development and Biochemical Basis
SIMPLE SUMMARY: The broad mite is a prominent pest, and its management is difficult due to its fast life cycle and farmers’ difficulty in detecting it before the damage is caused. Thus, the use of resistant plants is critical for an integrated pest management program for this mite species. Experimen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540688/ https://www.ncbi.nlm.nih.gov/pubmed/34680680 http://dx.doi.org/10.3390/insects12100910 |
Sumario: | SIMPLE SUMMARY: The broad mite is a prominent pest, and its management is difficult due to its fast life cycle and farmers’ difficulty in detecting it before the damage is caused. Thus, the use of resistant plants is critical for an integrated pest management program for this mite species. Experiments were conducted to search for common bean varieties with resistance against the broad mite. With our findings, selected genotypes could be used for an integrated pest management program. Carioca Original, one of the most-used varieties in Brazil, had a lower yield, despite low numbers of broad mites. Broad mite populations did not jeopardize the yield of the Verdão and Negrão 11 varieties. ABSTRACT: The broad mite (BM) Polyphagotarsonemus latus is a pest of great prominence for several crops, including the common bean (Phaseolus vulgaris). The objective of this study was to select resistant genotypes and to determine chemicals associated with resistance. In the first experiment, BM incidence was assessed for 36 genotypes in a greenhouse study. A group of 10 genotypes was selected according to the development of BM populations. Mite populations and phytometric and biochemical variables were then determined to study eventual differential genotypic responses to mite infestation. Lower numbers of mite mobile forms (larvae + adults) were found on Verdão, Negrão and Carioca Original genotypes. The magnitude of differences reached 5.4 times more BM in the IAC Alvorada than the Verdão genotype. Plant yields were reduced for the genotypes TAA Bola Cheia, IPR Sabiá, IPR Uirapuru, IAC Alvorada and Carioca Original when plants were infested with BM. The yields for LP 13833, BRS Esteio, Negrão 11, Verdão and MD 1133 were similar between infested and non-infested genotypes, indicating tolerance. Verdão and Negrão 11, besides the tolerance, exhibited low offspring development, indicating antibiosis and/or antixenosis. Higher phenolic compound levels were found in the Verdão genotype. Increased contents of catalase and peroxidase were detected for Negrão 11 genotype when infested with BM. This work allowed the detection of common bean genotypes that express resistance and tolerance to BM. These genotypes can be used in places with a history of BM infestation, or used in breeding programs to incorporate these characteristics in other genotypes. |
---|