Cargando…

Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier

SIMPLE SUMMARY: Understanding the evolutionary association between immune cells and the blood–brain barrier (BBB) is vital to develop therapeutic approaches. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. It is still not known which diapedesis route hemo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubick, Norwin, Klimovich, Pavel, Bieńkowska, Irmina, Poznanski, Piotr, Łazarczyk, Marzena, Sacharczuk, Mariusz, Mickael, Michel-Edwar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540695/
https://www.ncbi.nlm.nih.gov/pubmed/34680651
http://dx.doi.org/10.3390/insects12100882
_version_ 1784589049272467456
author Kubick, Norwin
Klimovich, Pavel
Bieńkowska, Irmina
Poznanski, Piotr
Łazarczyk, Marzena
Sacharczuk, Mariusz
Mickael, Michel-Edwar
author_facet Kubick, Norwin
Klimovich, Pavel
Bieńkowska, Irmina
Poznanski, Piotr
Łazarczyk, Marzena
Sacharczuk, Mariusz
Mickael, Michel-Edwar
author_sort Kubick, Norwin
collection PubMed
description SIMPLE SUMMARY: Understanding the evolutionary association between immune cells and the blood–brain barrier (BBB) is vital to develop therapeutic approaches. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. It is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. The drosophila genome lacks both genes. The Tre1 family (Tre1, moody, and Dmel_CG4313) contribute to regulating transepithelial migration in Drosophila. However, its evolutionary history is not known. We performed phylogenetic analysis to reconstruct the evolutionary history of the Tre1 family. We found Dmel_CG4313 only in insects. Tre1 exists only in invertebrates and is highly conserved. moody evolutionary history is more spread as it appears from Cnidaria up to mammals and is less conserved. The Tre1 family origin seems to be related to opsins. We have identified an SH3 motif in Tre1, moody, and Dmel_CG4313. SH3 regulates actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila. Thus, targeting the Tre1 family could help us regulate access to the brain. ABSTRACT: Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.
format Online
Article
Text
id pubmed-8540695
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85406952021-10-24 Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier Kubick, Norwin Klimovich, Pavel Bieńkowska, Irmina Poznanski, Piotr Łazarczyk, Marzena Sacharczuk, Mariusz Mickael, Michel-Edwar Insects Article SIMPLE SUMMARY: Understanding the evolutionary association between immune cells and the blood–brain barrier (BBB) is vital to develop therapeutic approaches. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. It is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. The drosophila genome lacks both genes. The Tre1 family (Tre1, moody, and Dmel_CG4313) contribute to regulating transepithelial migration in Drosophila. However, its evolutionary history is not known. We performed phylogenetic analysis to reconstruct the evolutionary history of the Tre1 family. We found Dmel_CG4313 only in insects. Tre1 exists only in invertebrates and is highly conserved. moody evolutionary history is more spread as it appears from Cnidaria up to mammals and is less conserved. The Tre1 family origin seems to be related to opsins. We have identified an SH3 motif in Tre1, moody, and Dmel_CG4313. SH3 regulates actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila. Thus, targeting the Tre1 family could help us regulate access to the brain. ABSTRACT: Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila. MDPI 2021-09-29 /pmc/articles/PMC8540695/ /pubmed/34680651 http://dx.doi.org/10.3390/insects12100882 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kubick, Norwin
Klimovich, Pavel
Bieńkowska, Irmina
Poznanski, Piotr
Łazarczyk, Marzena
Sacharczuk, Mariusz
Mickael, Michel-Edwar
Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title_full Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title_fullStr Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title_full_unstemmed Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title_short Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood–Brain Barrier
title_sort investigation of evolutionary history and origin of the tre1 family suggests a role in regulating hemocytes cells infiltration of the blood–brain barrier
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540695/
https://www.ncbi.nlm.nih.gov/pubmed/34680651
http://dx.doi.org/10.3390/insects12100882
work_keys_str_mv AT kubicknorwin investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT klimovichpavel investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT bienkowskairmina investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT poznanskipiotr investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT łazarczykmarzena investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT sacharczukmariusz investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier
AT mickaelmicheledwar investigationofevolutionaryhistoryandoriginofthetre1familysuggestsaroleinregulatinghemocytescellsinfiltrationofthebloodbrainbarrier