Cargando…
EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization
Drowsiness is a risk to human lives in many occupations and activities where full awareness is essential for the safe operation of systems and vehicles, such as driving a car or flying an airplane. Although it is one of the main causes of many road accidents, there is still no reliable definition of...
Autores principales: | Stancin, Igor, Frid, Nikolina, Cifrek, Mario, Jovic, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540703/ https://www.ncbi.nlm.nih.gov/pubmed/34696145 http://dx.doi.org/10.3390/s21206932 |
Ejemplares similares
-
A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems
por: Stancin, Igor, et al.
Publicado: (2021) -
Drowsiness Detection Using Ocular Indices from EEG Signal
por: Tarafder, Sreeza, et al.
Publicado: (2022) -
Convolutional Neural Network for Drowsiness Detection Using EEG Signals
por: Chaabene, Siwar, et al.
Publicado: (2021) -
Prediction of drowsiness using EEG signals in young Indonesian drivers
por: Puspasari, Maya Arlini, et al.
Publicado: (2023) -
Utilization of a combined EEG/NIRS system to predict driver drowsiness
por: Nguyen, Thien, et al.
Publicado: (2017)