Cargando…
Flexible Krylov Methods for Edge Enhancement in Imaging
Many successful variational regularization methods employed to solve linear inverse problems in imaging applications (such as image deblurring, image inpainting, and computed tomography) aim at enhancing edges in the solution, and often involve non-smooth regularization terms (e.g., total variation)...
Autores principales: | Gazzola, Silvia, Scott, Sebastian James, Spence, Alastair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540705/ https://www.ncbi.nlm.nih.gov/pubmed/34677302 http://dx.doi.org/10.3390/jimaging7100216 |
Ejemplares similares
-
Iterative Krylov Methods for Large Linear Systems
por: Van der Vorst, Henk A, et al.
Publicado: (2003) -
Krylov complexity for operators and states
por: Caputa, Paweł
Publicado: (2022) -
Solving Coupled Cluster Equations by the Newton Krylov Method
por: Yang, Chao, et al.
Publicado: (2020) -
Krylov solvers for linear algebraic systems
por: Broyden, Charles George, et al.
Publicado: (2004) -
Krylov methods for nonsymmetric linear systems: from theory to computations
por: Meurant, Gérard, et al.
Publicado: (2020)