Cargando…
Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling
Nano-graphene oxide (Nano-GO) is an extensively studied multifunctional carbon nanomaterial with attractive applications in biomedicine and biotechnology. However, few studies have been conducted to assess the epithelial-to-mesenchymal transition (EMT) in the retinal pigment epithelium (RPE). We aim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540736/ https://www.ncbi.nlm.nih.gov/pubmed/34684987 http://dx.doi.org/10.3390/nano11102546 |
_version_ | 1784589059156344832 |
---|---|
author | Park, Sun Young Song, Woo Chang Kim, Beomjin Oh, Jin-Woo Park, Geuntae |
author_facet | Park, Sun Young Song, Woo Chang Kim, Beomjin Oh, Jin-Woo Park, Geuntae |
author_sort | Park, Sun Young |
collection | PubMed |
description | Nano-graphene oxide (Nano-GO) is an extensively studied multifunctional carbon nanomaterial with attractive applications in biomedicine and biotechnology. However, few studies have been conducted to assess the epithelial-to-mesenchymal transition (EMT) in the retinal pigment epithelium (RPE). We aimed to determine whether Nano-GO induces EMT by regulating phospholipase D (PLD) signaling in human RPE (ARPE-19) cells. The physicochemical characterization of Nano-GO was performed using a Zetasizer, X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy. RPE cell viability assays were performed, and the migratory effects of RPE cells were evaluated. RPE cell collagen gel contraction was also determined. Intracellular reactive oxygen species (ROS) levels were determined by fluorescence microscopy and flow cytometry. Immunofluorescence staining and western blot analysis were used to detect EMT-related protein expression. Phospholipase D (PLD) enzymatic activities were also measured. Nano-GO significantly enhanced the scratch-healing ability of RPE cells, indicating that the RPE cell migration ability was increased. Following Nano-GO treatment, the RPE cell penetration of the chamber was significantly promoted, suggesting that the migratory ability was strengthened. We also observed collagen gel contraction and the generation of intracellular ROS in RPE cells. The results showed that Nano-GO induced collagen gel contraction and intracellular ROS production in RPE cells. Moreover, immunofluorescence staining and western blot analysis revealed that Nano-GO significantly regulated key molecules of EMT, including epithelial-cadherin, neural-cadherin, α-smooth muscle actin, vimentin, and matrix metalloproteinases (MMP-2 and MMP-9). Interestingly, Nano-GO-induced RPE cell migration and intracellular ROS production were abrogated in PLD-knockdown RPE cells, indicating that PLD activation played a crucial role in the Nano-GO-induced RPE EMT process. We demonstrate for the first time that Nano-GO promotes RPE cell migration through PLD-mediated ROS production. We provide preliminary evidence to support the hypothesis that Nano-GO has adverse health effects related to RPE damage. |
format | Online Article Text |
id | pubmed-8540736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85407362021-10-24 Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling Park, Sun Young Song, Woo Chang Kim, Beomjin Oh, Jin-Woo Park, Geuntae Nanomaterials (Basel) Article Nano-graphene oxide (Nano-GO) is an extensively studied multifunctional carbon nanomaterial with attractive applications in biomedicine and biotechnology. However, few studies have been conducted to assess the epithelial-to-mesenchymal transition (EMT) in the retinal pigment epithelium (RPE). We aimed to determine whether Nano-GO induces EMT by regulating phospholipase D (PLD) signaling in human RPE (ARPE-19) cells. The physicochemical characterization of Nano-GO was performed using a Zetasizer, X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy. RPE cell viability assays were performed, and the migratory effects of RPE cells were evaluated. RPE cell collagen gel contraction was also determined. Intracellular reactive oxygen species (ROS) levels were determined by fluorescence microscopy and flow cytometry. Immunofluorescence staining and western blot analysis were used to detect EMT-related protein expression. Phospholipase D (PLD) enzymatic activities were also measured. Nano-GO significantly enhanced the scratch-healing ability of RPE cells, indicating that the RPE cell migration ability was increased. Following Nano-GO treatment, the RPE cell penetration of the chamber was significantly promoted, suggesting that the migratory ability was strengthened. We also observed collagen gel contraction and the generation of intracellular ROS in RPE cells. The results showed that Nano-GO induced collagen gel contraction and intracellular ROS production in RPE cells. Moreover, immunofluorescence staining and western blot analysis revealed that Nano-GO significantly regulated key molecules of EMT, including epithelial-cadherin, neural-cadherin, α-smooth muscle actin, vimentin, and matrix metalloproteinases (MMP-2 and MMP-9). Interestingly, Nano-GO-induced RPE cell migration and intracellular ROS production were abrogated in PLD-knockdown RPE cells, indicating that PLD activation played a crucial role in the Nano-GO-induced RPE EMT process. We demonstrate for the first time that Nano-GO promotes RPE cell migration through PLD-mediated ROS production. We provide preliminary evidence to support the hypothesis that Nano-GO has adverse health effects related to RPE damage. MDPI 2021-09-28 /pmc/articles/PMC8540736/ /pubmed/34684987 http://dx.doi.org/10.3390/nano11102546 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Park, Sun Young Song, Woo Chang Kim, Beomjin Oh, Jin-Woo Park, Geuntae Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title | Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title_full | Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title_fullStr | Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title_full_unstemmed | Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title_short | Nano-Graphene Oxide-Promoted Epithelial–Mesenchymal Transition of Human Retinal Pigment Epithelial Cells through Regulation of Phospholipase D Signaling |
title_sort | nano-graphene oxide-promoted epithelial–mesenchymal transition of human retinal pigment epithelial cells through regulation of phospholipase d signaling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540736/ https://www.ncbi.nlm.nih.gov/pubmed/34684987 http://dx.doi.org/10.3390/nano11102546 |
work_keys_str_mv | AT parksunyoung nanographeneoxidepromotedepithelialmesenchymaltransitionofhumanretinalpigmentepithelialcellsthroughregulationofphospholipasedsignaling AT songwoochang nanographeneoxidepromotedepithelialmesenchymaltransitionofhumanretinalpigmentepithelialcellsthroughregulationofphospholipasedsignaling AT kimbeomjin nanographeneoxidepromotedepithelialmesenchymaltransitionofhumanretinalpigmentepithelialcellsthroughregulationofphospholipasedsignaling AT ohjinwoo nanographeneoxidepromotedepithelialmesenchymaltransitionofhumanretinalpigmentepithelialcellsthroughregulationofphospholipasedsignaling AT parkgeuntae nanographeneoxidepromotedepithelialmesenchymaltransitionofhumanretinalpigmentepithelialcellsthroughregulationofphospholipasedsignaling |