Cargando…
Novel Texture Feature Descriptors Based on Multi-Fractal Analysis and LBP for Classifying Breast Density in Mammograms
This paper investigates the usefulness of multi-fractal analysis and local binary patterns (LBP) as texture descriptors for classifying mammogram images into different breast density categories. Multi-fractal analysis is also used in the pre-processing step to segment the region of interest (ROI). W...
Autores principales: | Li, Haipeng, Mukundan, Ramakrishnan, Boyd, Shelley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540831/ https://www.ncbi.nlm.nih.gov/pubmed/34677291 http://dx.doi.org/10.3390/jimaging7100205 |
Ejemplares similares
-
Spatial Distribution Analysis of Novel Texture Feature Descriptors for Accurate Breast Density Classification
por: Li, Haipeng, et al.
Publicado: (2022) -
Scale invariant texture descriptors for classifying celiac disease
por: Hegenbart, Sebastian, et al.
Publicado: (2013) -
Combination of LBP Bin and Histogram Selections for Color Texture Classification
por: Porebski, Alice, et al.
Publicado: (2020) -
Detecting and classifying lesions in mammograms with Deep Learning
por: Ribli, Dezső, et al.
Publicado: (2018) -
Analysis of Oriented Texture - with application to the Detection of Architectural Distortion in Mammograms: with Application to the Detection of Architectural Distortion in Mammograms
por: Ayres, Fabio, et al.
Publicado: (2011)