Cargando…
Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways
Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540899/ https://www.ncbi.nlm.nih.gov/pubmed/34682262 http://dx.doi.org/10.3390/jof7100841 |
_version_ | 1784589098486333440 |
---|---|
author | Strycker, Benjamin D. Han, Zehua Bahari, Aysan Pham, Tuyetnhu Lin, Xiaorong Shaw, Brian D. Sokolov, Alexei V. Scully, Marlan O. |
author_facet | Strycker, Benjamin D. Han, Zehua Bahari, Aysan Pham, Tuyetnhu Lin, Xiaorong Shaw, Brian D. Sokolov, Alexei V. Scully, Marlan O. |
author_sort | Strycker, Benjamin D. |
collection | PubMed |
description | Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins. |
format | Online Article Text |
id | pubmed-8540899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85408992021-10-24 Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways Strycker, Benjamin D. Han, Zehua Bahari, Aysan Pham, Tuyetnhu Lin, Xiaorong Shaw, Brian D. Sokolov, Alexei V. Scully, Marlan O. J Fungi (Basel) Article Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins. MDPI 2021-10-07 /pmc/articles/PMC8540899/ /pubmed/34682262 http://dx.doi.org/10.3390/jof7100841 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Strycker, Benjamin D. Han, Zehua Bahari, Aysan Pham, Tuyetnhu Lin, Xiaorong Shaw, Brian D. Sokolov, Alexei V. Scully, Marlan O. Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title_full | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title_fullStr | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title_full_unstemmed | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title_short | Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways |
title_sort | raman characterization of fungal dhn and dopa melanin biosynthesis pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540899/ https://www.ncbi.nlm.nih.gov/pubmed/34682262 http://dx.doi.org/10.3390/jof7100841 |
work_keys_str_mv | AT stryckerbenjamind ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT hanzehua ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT bahariaysan ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT phamtuyetnhu ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT linxiaorong ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT shawbriand ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT sokolovalexeiv ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways AT scullymarlano ramancharacterizationoffungaldhnanddopamelaninbiosynthesispathways |