Cargando…

Self-Excited Acoustical Measurement System for Rock Mass Stress Mapping

This paper presents the results of a preliminary study of a self-excited acoustical system (SAS) for nondestructive testing (NDT). The SAS system was used for mine excavation stresses examination. The principle of operation of the SAS system based on the elastoacoustical effect is presented. A numer...

Descripción completa

Detalles Bibliográficos
Autores principales: Lalik, Krzysztof, Dominik, Ireneusz, Skrzypkowski, Krzysztof, Korzeniowski, Waldemar, Zagórski, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540946/
https://www.ncbi.nlm.nih.gov/pubmed/34695962
http://dx.doi.org/10.3390/s21206749
Descripción
Sumario:This paper presents the results of a preliminary study of a self-excited acoustical system (SAS) for nondestructive testing (NDT). The SAS system was used for mine excavation stresses examination. The principle of operation of the SAS system based on the elastoacoustical effect is presented. A numerical analysis of the excavation was carried out considering the stress factor. An equivalent model based on a two-degree-of-freedom system with a delay has been developed. This model allowed to determine the relation which relates the frequency of the self-excited system to the stress level in the studied ceiling section. This relationship is defined by the elastoacoustic coefficient. The test details for anchorages in laboratory conditions and Wieliczka Salt Mine were presented. This research details of a method for creating actual stress maps in the ceiling of a mine excavation. The results confirmed the possibility of using the new measurement system to monitor the state of stresses in the rock mass.