Cargando…
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix Factorization
Classical approaches in cluster analysis are typically based on a feature space analysis. However, many applications lead to datasets with additional spatial information and a ground truth with spatially coherent classes, which will not necessarily be reconstructed well by standard clustering method...
Autor principal: | Fernsel, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540947/ https://www.ncbi.nlm.nih.gov/pubmed/34677280 http://dx.doi.org/10.3390/jimaging7100194 |
Ejemplares similares
-
Generalized Discriminant Orthogonal Nonnegative Tensor Factorization for Facial Expression Recognition
por: XiuJun, Zhang, et al.
Publicado: (2014) -
Nonnegative spatial factorization applied to spatial genomics
por: Townes, F. William, et al.
Publicado: (2022) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Reverse annealing for nonnegative/binary matrix factorization
por: Golden, John, et al.
Publicado: (2021) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008)