Cargando…

Rochelle Salt-Based Ferroelectric and Piezoelectric Composite Produced with Simple Additive Manufacturing Techniques

More than one century ago, piezoelectricity and ferroelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch to a resilient and circular economic model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-re...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemaire, Etienne, Thuau, Damien, De Vaulx, Jean-Baptiste, Vaissiere, Nicolas, Atilla, Atli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540971/
https://www.ncbi.nlm.nih.gov/pubmed/34683726
http://dx.doi.org/10.3390/ma14206132
Descripción
Sumario:More than one century ago, piezoelectricity and ferroelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch to a resilient and circular economic model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartaric acid and polylactide, thereby significantly reducing the energy budget without requiring any sophisticated equipment. These piezoelectric devices are manufactured by liquid-phase epitaxy-grown Rochelle salt (RS) crystals in a 3D-printed poly(Lactic acid) (PLA) matrix, which is an artificial squared mesh which mimics anatomy of natural wood. This composite material can easily be produced in any fablab with renewable materials and at low processing temperatures, which reduces the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any poling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.