Cargando…

Temperature/Reduction Dual Response Nanogel Is Formed by In Situ Stereocomplexation of Poly (Lactic Acid)

A novel type of dual responsive nanogels was synthesized by physical crosslinking of polylactic acid stereocomplexation: temperature and reduction dual stimulation responsive gels were formed in situ by mixing equal amounts of PLA (Poly (Lactic Acid)) enantiomeric graft copolymer micellar solution;...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Wenli, Wang, Zhidan, Song, Fei, Fu, Yu, Wu, Qingrong, Liu, Shouxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540984/
https://www.ncbi.nlm.nih.gov/pubmed/34685251
http://dx.doi.org/10.3390/polym13203492
Descripción
Sumario:A novel type of dual responsive nanogels was synthesized by physical crosslinking of polylactic acid stereocomplexation: temperature and reduction dual stimulation responsive gels were formed in situ by mixing equal amounts of PLA (Poly (Lactic Acid)) enantiomeric graft copolymer micellar solution; the properties of double stimulation response make it more targeted in the field of drug release. The structural composition of the gels was studied by proton nuclear magnetic resonance ((1)H NMR) and Fourier transform infrared spectroscopy (FT-IR). Using transmission electron microscope (TEM) and dynamic light scattering (DLS) instruments, the differences in morphology and particle size were analyzed (indicating that nanogels have dual stimulus responses of temperature sensitivity and reduction). The Wide-Angle X-ray diffractionr (WAXD) was used to prove the stereocomplexation of PLA in the gels, the mechanical properties and gelation process of the gels were studied by rheology test. The physically cross-linked gel network generated by the self-recombination of micelles and then stereo-complexation has a more stable structure. The results show that the micelle properties, swelling properties and rheological properties of nanogels can be changed by adjusting the degree of polymerization of polylactic acid. In addition, it provides a safe and practical new method for preparing stable temperature/reduction response physical cross-linked gel.