Cargando…
PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application
Core–shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core–shell particles is to deliver the loaded drugs as they are capable of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540999/ https://www.ncbi.nlm.nih.gov/pubmed/34685230 http://dx.doi.org/10.3390/polym13203471 |
_version_ | 1784589122866774016 |
---|---|
author | Kim, Se Min Patel, Madhumita Patel, Rajkumar |
author_facet | Kim, Se Min Patel, Madhumita Patel, Rajkumar |
author_sort | Kim, Se Min |
collection | PubMed |
description | Core–shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core–shell particles is to deliver the loaded drugs as they are capable of sequence-controlled release and provide protection of drugs. Among other biomedical polymers, poly (lactic-co-glycolic acid) (PLGA), a food and drug administration (FDA)-approved polymer, has been recognized for the vehicle material. This review introduces PLGA core–shell nano/microparticles and summarizes various drug-delivery systems based on these particles for cancer therapy and tissue regeneration. Tissue regeneration mainly includes bone, cartilage, and periodontal regeneration. |
format | Online Article Text |
id | pubmed-8540999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85409992021-10-24 PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application Kim, Se Min Patel, Madhumita Patel, Rajkumar Polymers (Basel) Review Core–shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core–shell particles is to deliver the loaded drugs as they are capable of sequence-controlled release and provide protection of drugs. Among other biomedical polymers, poly (lactic-co-glycolic acid) (PLGA), a food and drug administration (FDA)-approved polymer, has been recognized for the vehicle material. This review introduces PLGA core–shell nano/microparticles and summarizes various drug-delivery systems based on these particles for cancer therapy and tissue regeneration. Tissue regeneration mainly includes bone, cartilage, and periodontal regeneration. MDPI 2021-10-10 /pmc/articles/PMC8540999/ /pubmed/34685230 http://dx.doi.org/10.3390/polym13203471 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kim, Se Min Patel, Madhumita Patel, Rajkumar PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title | PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title_full | PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title_fullStr | PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title_full_unstemmed | PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title_short | PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application |
title_sort | plga core-shell nano/microparticle delivery system for biomedical application |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540999/ https://www.ncbi.nlm.nih.gov/pubmed/34685230 http://dx.doi.org/10.3390/polym13203471 |
work_keys_str_mv | AT kimsemin plgacoreshellnanomicroparticledeliverysystemforbiomedicalapplication AT patelmadhumita plgacoreshellnanomicroparticledeliverysystemforbiomedicalapplication AT patelrajkumar plgacoreshellnanomicroparticledeliverysystemforbiomedicalapplication |