Cargando…
Silent EEG-Speech Recognition Using Convolutional and Recurrent Neural Network with 85% Accuracy of 9 Words Classification
In this work, we focus on silent speech recognition in electroencephalography (EEG) data of healthy individuals to advance brain–computer interface (BCI) development to include people with neurodegeneration and movement and communication difficulties in society. Our dataset was recorded from 270 hea...
Autores principales: | Vorontsova, Darya, Menshikov, Ivan, Zubov, Aleksandr, Orlov, Kirill, Rikunov, Peter, Zvereva, Ekaterina, Flitman, Lev, Lanikin, Anton, Sokolova, Anna, Markov, Sergey, Bernadotte, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541074/ https://www.ncbi.nlm.nih.gov/pubmed/34695956 http://dx.doi.org/10.3390/s21206744 |
Ejemplares similares
-
The correlation between first words appearance and productive speech in adolescents with schizophrenia
por: Shvedovskiy, E., et al.
Publicado: (2021) -
Silent speech command word recognition using stepped frequency continuous wave radar
por: Wagner, Christoph, et al.
Publicado: (2022) -
An introduction to silent speech interfaces
por: Freitas, João, et al.
Publicado: (2017) -
A novel silent speech recognition approach based on parallel inception convolutional neural network and Mel frequency spectral coefficient
por: Wu, Jinghan, et al.
Publicado: (2022) -
Silent Pauses and Speech Indices as Biomarkers for Primary Progressive Aphasia
por: Potagas, Constantin, et al.
Publicado: (2022)