Cargando…
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
Rolling bearings are widely used in industrial manufacturing, and ensuring their stable and effective fault detection is a core requirement in the manufacturing process. However, it is a great challenge to achieve a highly accurate rolling bearing fault diagnosis because of the severe imbalance and...
Autores principales: | Tang, Hongtao, Gao, Shengbo, Wang, Lei, Li, Xixing, Li, Bing, Pang, Shibao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541190/ https://www.ncbi.nlm.nih.gov/pubmed/34695966 http://dx.doi.org/10.3390/s21206754 |
Ejemplares similares
-
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
A fault diagnosis method based on Auxiliary Classifier Generative Adversarial
Network for rolling bearing
por: Wu, Chunming, et al.
Publicado: (2021) -
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023) -
A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis
por: Huo, Lin, et al.
Publicado: (2022) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023)