Cargando…
ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation
It is of prime importance to develop anode electrocatalysts for direct methanol fuel cells (DMFCs) with good performance, which is critical for their commercial applications. Metal-organic framework (MOF)-derived carbon materials are extensively developed as supports of catalysts. Herein, Co embedde...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541230/ https://www.ncbi.nlm.nih.gov/pubmed/34684931 http://dx.doi.org/10.3390/nano11102491 |
Sumario: | It is of prime importance to develop anode electrocatalysts for direct methanol fuel cells (DMFCs) with good performance, which is critical for their commercial applications. Metal-organic framework (MOF)-derived carbon materials are extensively developed as supports of catalysts. Herein, Co embedded nitrogen-doped carbon nanotube hollow porous carbon (Co-NCNT-HPC) derived from MOFs have been fabricated, which were synthesized by pyrolyzing at an optimized temperature of 800 °C using ZIF-8@ZIF-67 as a precursor. The presence of ZIF-8@ZIF-67 ensures the doping of nitrogen and the large specific surface area of the support materials at high temperatures. A Pt/Co-NCNT-HPC800 sample, which was synthesized using Co-NCNT-HPC800 as a support, showed an enhanced mass activity of 416.2 mA mg(−1)(Pt) for methanol oxidation reaction (MOR), and the onset potential of CO(ad) oxidation of 0.51 V, which shifted negatively about 0.13 V compared with Pt/C (20%). Moreover, the Pt/Co-NCNT-HPC800 sample exhibits high stability. This work provides a facile strategy for MOF-derived carbon materials to construct advanced electrocatalysts for MOR. |
---|