Cargando…
Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning
Cognitive workload is a crucial factor in tasks involving dynamic decision-making and other real-time and high-risk situations. Neuroimaging techniques have long been used for estimating cognitive workload. Given the portability, cost-effectiveness and high time-resolution of EEG as compared to fMRI...
Autores principales: | Gupta, Anmol, Siddhad, Gourav, Pandey, Vishal, Roy, Partha Pratim, Kim, Byung-Gyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541420/ https://www.ncbi.nlm.nih.gov/pubmed/34695921 http://dx.doi.org/10.3390/s21206710 |
Ejemplares similares
-
EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning
por: Cao, Jun, et al.
Publicado: (2022) -
Parallel Mechanism of Spectral Feature-Enhanced Maps in EEG-Based Cognitive Workload Classification
por: Zhang, Yihong, et al.
Publicado: (2019) -
Decoding the cognitive states of attention and distraction in a real-life setting using EEG
por: Kaushik, Pallavi, et al.
Publicado: (2022) -
Cognitive task analysis and workload classification
por: Knisely, Benjamin M., et al.
Publicado: (2021) -
Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG
por: Tremmel, Christoph, et al.
Publicado: (2019)