Cargando…
Experimental Study on Tensile Mechanical Properties and Reinforcement Ratio of Steel–Plastic Compound Geogrid-Reinforced Belt
The steel–plastic compound geogrid has been widely used as a new reinforcement material in geotechnical engineering and other fields. Therefore, it is essential to fully understand the mechanical properties of steel–plastic compound geogrid-reinforced belts to utilize steel–plastic compound geogrids...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541536/ https://www.ncbi.nlm.nih.gov/pubmed/34683552 http://dx.doi.org/10.3390/ma14205963 |
Sumario: | The steel–plastic compound geogrid has been widely used as a new reinforcement material in geotechnical engineering and other fields. Therefore, it is essential to fully understand the mechanical properties of steel–plastic compound geogrid-reinforced belts to utilize steel–plastic compound geogrids efficiently. In this study, tensile mechanical tests of steel wire, polyethylene geogrid belt, and steel–plastic compound geogrid-reinforced belt were conducted with respect to the tensile mechanical properties of steel–plastic compound geogrid-reinforced belts. In addition, the minimum reinforcement and optimal reinforcement ratios of steel–plastic compound geogrid-reinforced belts were summarized. The results showed that the steel–plastic compound geogrid-reinforced belts possessed an incongruent force of the internal steel wire during the tensile process. The tensile stress–strain curve of the steel–plastic compound geogrid-reinforced belt can be divided into the composite adjustment, steel wire breaking, and residual deformation stages. The tensile strength of the steel–plastic compound geogrid-reinforced belt is proportional to the diameter and number of steel wires in the reinforced belt. The minimum and optimum reinforcement ratios of steel wire in the steel–plastic compound geogrid-reinforced belt were 0.63% and 11.92%, respectively. |
---|