Cargando…
Semi-Supervised Domain Adaptation for Holistic Counting under Label Gap
This paper proposes a novel approach for semi-supervised domain adaptation for holistic regression tasks, where a DNN predicts a continuous value [Formula: see text] given an input image x. The current literature generally lacks specific domain adaptation approaches for this task, as most of them mo...
Autores principales: | Litrico, Mattia, Battiato, Sebastiano, Tsaftaris, Sotirios A., Giuffrida, Mario Valerio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541592/ https://www.ncbi.nlm.nih.gov/pubmed/34677284 http://dx.doi.org/10.3390/jimaging7100198 |
Ejemplares similares
-
Pheno‐Deep Counter: a unified and versatile deep learning architecture for leaf counting
por: Giuffrida, Mario Valerio, et al.
Publicado: (2018) -
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
por: Hur, Cheong-Hwan, et al.
Publicado: (2022) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping
por: Dobrescu, Andrei, et al.
Publicado: (2020) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020)