Cargando…
RTJTN: Relational Triplet Joint Tagging Network for Joint Entity and Relation Extraction
Extracting entities and relations from unstructured sentences is one of the most concerned tasks in the field of natural language processing. However, most existing works process entity and relation information in a certain order and suffer from the error iteration. In this paper, we introduce a rel...
Autores principales: | Yang, Zhenyu, Wang, Lei, Ma, Bo, Yang, Yating, Dong, Rui, Wang, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541843/ https://www.ncbi.nlm.nih.gov/pubmed/34697539 http://dx.doi.org/10.1155/2021/3447473 |
Ejemplares similares
-
A mutually-exclusive binary cross tagging framework for joint extraction of entities and relations
por: Liu, Xuan, et al.
Publicado: (2022) -
A Relational Adaptive Neural Model for Joint Entity and Relation Extraction
por: Duan, Guiduo, et al.
Publicado: (2021) -
A Relation-Oriented Model With Global Context Information for Joint Extraction of Overlapping Relations and Entities
por: Han, Huihui, et al.
Publicado: (2022) -
Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning
por: Feng, Yuntian, et al.
Publicado: (2017) -
Span-based single-stage joint entity-relation extraction model
por: Han, Dongchen, et al.
Publicado: (2023)