Cargando…
A Deep Learning Approach for Predicting Antigenic Variation of Influenza A H3N2
Modeling antigenic variation in influenza (flu) virus A H3N2 using amino acid sequences is a promising approach for improving the prediction accuracy of immune efficacy of vaccines and increasing the efficiency of vaccine screening. Antigenic drift and antigenic jump/shift, which arise from the accu...
Autores principales: | Xia, Yuan-Ling, Li, Weihua, Li, Yongping, Ji, Xing-Lai, Fu, Yun-Xin, Liu, Shu-Qun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541863/ https://www.ncbi.nlm.nih.gov/pubmed/34697557 http://dx.doi.org/10.1155/2021/9997669 |
Ejemplares similares
-
Canine Influenza Virus A(H3N2) Clade with Antigenic Variation, China, 2016–2017
por: Lyu, Yanli, et al.
Publicado: (2019) -
Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses
por: Jiao, Peirong, et al.
Publicado: (2016) -
The molecular basis of antigenic variation among A(H9N2) avian influenza viruses
por: Peacock, Thomas P., et al.
Publicado: (2018) -
Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus
por: Wang, Fei, et al.
Publicado: (2021) -
Antigenic Drift of the Hemagglutinin from an Influenza A (H1N1) pdm09 Clinical Isolate Increases its Pathogenicity In Vitro
por: Xing, Lei, et al.
Publicado: (2021)