Cargando…
A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones
BACKGROUND: Undernutrition is the main cause of child death in developing countries. This paper aimed to explore the efficacy of machine learning (ML) approaches in predicting under-five undernutrition in Ethiopian administrative zones and to identify the most important predictors. METHOD: The study...
Autores principales: | Fenta, Haile Mekonnen, Zewotir, Temesgen, Muluneh, Essey Kebede |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542294/ https://www.ncbi.nlm.nih.gov/pubmed/34689769 http://dx.doi.org/10.1186/s12911-021-01652-1 |
Ejemplares similares
-
Disparities in childhood composite index of anthropometric failure prevalence and determinants across Ethiopian administrative zones
por: Fenta, Haile Mekonnen, et al.
Publicado: (2021) -
Space–time dynamics regression models to assess variations of composite index for anthropometric failure across the administrative zones in Ethiopia
por: Fenta, Haile Mekonnen, et al.
Publicado: (2022) -
Spatial data analysis of malnutrition among children under-five years in Ethiopia
por: Fenta, Haile Mekonnen, et al.
Publicado: (2021) -
Small Area Estimation of Undernutrition under Age Five Children Based on Spatial-Temporal Models
por: Yilema, Seyifemickael Amare, et al.
Publicado: (2022) -
Rural children active trachoma risk factors and their interactions
por: Muluneh, Essey Kebede, et al.
Publicado: (2016)