Cargando…

Contrastive learning improves critical event prediction in COVID-19 patients

Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced....

Descripción completa

Detalles Bibliográficos
Autores principales: Wanyan, Tingyi, Honarvar, Hossein, Jaladanki, Suraj K., Zang, Chengxi, Naik, Nidhi, Somani, Sulaiman, De Freitas, Jessica K., Paranjpe, Ishan, Vaid, Akhil, Zhang, Jing, Miotto, Riccardo, Wang, Zhangyang, Nadkarni, Girish N., Zitnik, Marinka, Azad, Ariful, Wang, Fei, Ding, Ying, Glicksberg, Benjamin S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542449/
https://www.ncbi.nlm.nih.gov/pubmed/34723227
http://dx.doi.org/10.1016/j.patter.2021.100389
_version_ 1784589432569987072
author Wanyan, Tingyi
Honarvar, Hossein
Jaladanki, Suraj K.
Zang, Chengxi
Naik, Nidhi
Somani, Sulaiman
De Freitas, Jessica K.
Paranjpe, Ishan
Vaid, Akhil
Zhang, Jing
Miotto, Riccardo
Wang, Zhangyang
Nadkarni, Girish N.
Zitnik, Marinka
Azad, Ariful
Wang, Fei
Ding, Ying
Glicksberg, Benjamin S.
author_facet Wanyan, Tingyi
Honarvar, Hossein
Jaladanki, Suraj K.
Zang, Chengxi
Naik, Nidhi
Somani, Sulaiman
De Freitas, Jessica K.
Paranjpe, Ishan
Vaid, Akhil
Zhang, Jing
Miotto, Riccardo
Wang, Zhangyang
Nadkarni, Girish N.
Zitnik, Marinka
Azad, Ariful
Wang, Fei
Ding, Ying
Glicksberg, Benjamin S.
author_sort Wanyan, Tingyi
collection PubMed
description Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC).
format Online
Article
Text
id pubmed-8542449
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-85424492021-10-25 Contrastive learning improves critical event prediction in COVID-19 patients Wanyan, Tingyi Honarvar, Hossein Jaladanki, Suraj K. Zang, Chengxi Naik, Nidhi Somani, Sulaiman De Freitas, Jessica K. Paranjpe, Ishan Vaid, Akhil Zhang, Jing Miotto, Riccardo Wang, Zhangyang Nadkarni, Girish N. Zitnik, Marinka Azad, Ariful Wang, Fei Ding, Ying Glicksberg, Benjamin S. Patterns (N Y) Article Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC). Elsevier 2021-10-25 /pmc/articles/PMC8542449/ /pubmed/34723227 http://dx.doi.org/10.1016/j.patter.2021.100389 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wanyan, Tingyi
Honarvar, Hossein
Jaladanki, Suraj K.
Zang, Chengxi
Naik, Nidhi
Somani, Sulaiman
De Freitas, Jessica K.
Paranjpe, Ishan
Vaid, Akhil
Zhang, Jing
Miotto, Riccardo
Wang, Zhangyang
Nadkarni, Girish N.
Zitnik, Marinka
Azad, Ariful
Wang, Fei
Ding, Ying
Glicksberg, Benjamin S.
Contrastive learning improves critical event prediction in COVID-19 patients
title Contrastive learning improves critical event prediction in COVID-19 patients
title_full Contrastive learning improves critical event prediction in COVID-19 patients
title_fullStr Contrastive learning improves critical event prediction in COVID-19 patients
title_full_unstemmed Contrastive learning improves critical event prediction in COVID-19 patients
title_short Contrastive learning improves critical event prediction in COVID-19 patients
title_sort contrastive learning improves critical event prediction in covid-19 patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542449/
https://www.ncbi.nlm.nih.gov/pubmed/34723227
http://dx.doi.org/10.1016/j.patter.2021.100389
work_keys_str_mv AT wanyantingyi contrastivelearningimprovescriticaleventpredictionincovid19patients
AT honarvarhossein contrastivelearningimprovescriticaleventpredictionincovid19patients
AT jaladankisurajk contrastivelearningimprovescriticaleventpredictionincovid19patients
AT zangchengxi contrastivelearningimprovescriticaleventpredictionincovid19patients
AT naiknidhi contrastivelearningimprovescriticaleventpredictionincovid19patients
AT somanisulaiman contrastivelearningimprovescriticaleventpredictionincovid19patients
AT defreitasjessicak contrastivelearningimprovescriticaleventpredictionincovid19patients
AT paranjpeishan contrastivelearningimprovescriticaleventpredictionincovid19patients
AT vaidakhil contrastivelearningimprovescriticaleventpredictionincovid19patients
AT zhangjing contrastivelearningimprovescriticaleventpredictionincovid19patients
AT miottoriccardo contrastivelearningimprovescriticaleventpredictionincovid19patients
AT wangzhangyang contrastivelearningimprovescriticaleventpredictionincovid19patients
AT nadkarnigirishn contrastivelearningimprovescriticaleventpredictionincovid19patients
AT zitnikmarinka contrastivelearningimprovescriticaleventpredictionincovid19patients
AT azadariful contrastivelearningimprovescriticaleventpredictionincovid19patients
AT wangfei contrastivelearningimprovescriticaleventpredictionincovid19patients
AT dingying contrastivelearningimprovescriticaleventpredictionincovid19patients
AT glicksbergbenjamins contrastivelearningimprovescriticaleventpredictionincovid19patients