Cargando…
Contrastive learning improves critical event prediction in COVID-19 patients
Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced....
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542449/ https://www.ncbi.nlm.nih.gov/pubmed/34723227 http://dx.doi.org/10.1016/j.patter.2021.100389 |
_version_ | 1784589432569987072 |
---|---|
author | Wanyan, Tingyi Honarvar, Hossein Jaladanki, Suraj K. Zang, Chengxi Naik, Nidhi Somani, Sulaiman De Freitas, Jessica K. Paranjpe, Ishan Vaid, Akhil Zhang, Jing Miotto, Riccardo Wang, Zhangyang Nadkarni, Girish N. Zitnik, Marinka Azad, Ariful Wang, Fei Ding, Ying Glicksberg, Benjamin S. |
author_facet | Wanyan, Tingyi Honarvar, Hossein Jaladanki, Suraj K. Zang, Chengxi Naik, Nidhi Somani, Sulaiman De Freitas, Jessica K. Paranjpe, Ishan Vaid, Akhil Zhang, Jing Miotto, Riccardo Wang, Zhangyang Nadkarni, Girish N. Zitnik, Marinka Azad, Ariful Wang, Fei Ding, Ying Glicksberg, Benjamin S. |
author_sort | Wanyan, Tingyi |
collection | PubMed |
description | Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC). |
format | Online Article Text |
id | pubmed-8542449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85424492021-10-25 Contrastive learning improves critical event prediction in COVID-19 patients Wanyan, Tingyi Honarvar, Hossein Jaladanki, Suraj K. Zang, Chengxi Naik, Nidhi Somani, Sulaiman De Freitas, Jessica K. Paranjpe, Ishan Vaid, Akhil Zhang, Jing Miotto, Riccardo Wang, Zhangyang Nadkarni, Girish N. Zitnik, Marinka Azad, Ariful Wang, Fei Ding, Ying Glicksberg, Benjamin S. Patterns (N Y) Article Deep learning (DL) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing DL models for the coronavirus disease 2019 (COVID-19) pandemic, where data are highly class imbalanced. Conventional approaches in DL use cross-entropy loss (CEL), which often suffers from poor margin classification. We show that contrastive loss (CL) improves the performance of CEL, especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We use a diverse EHR dataset to predict three outcomes: mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the performance of CEL and CL, models are tested on the full dataset and a restricted dataset. CL models consistently outperform CEL models, with differences ranging from 0.04 to 0.15 for area under the precision and recall curve (AUPRC) and 0.05 to 0.1 for area under the receiver-operating characteristic curve (AUROC). Elsevier 2021-10-25 /pmc/articles/PMC8542449/ /pubmed/34723227 http://dx.doi.org/10.1016/j.patter.2021.100389 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wanyan, Tingyi Honarvar, Hossein Jaladanki, Suraj K. Zang, Chengxi Naik, Nidhi Somani, Sulaiman De Freitas, Jessica K. Paranjpe, Ishan Vaid, Akhil Zhang, Jing Miotto, Riccardo Wang, Zhangyang Nadkarni, Girish N. Zitnik, Marinka Azad, Ariful Wang, Fei Ding, Ying Glicksberg, Benjamin S. Contrastive learning improves critical event prediction in COVID-19 patients |
title | Contrastive learning improves critical event prediction in COVID-19 patients |
title_full | Contrastive learning improves critical event prediction in COVID-19 patients |
title_fullStr | Contrastive learning improves critical event prediction in COVID-19 patients |
title_full_unstemmed | Contrastive learning improves critical event prediction in COVID-19 patients |
title_short | Contrastive learning improves critical event prediction in COVID-19 patients |
title_sort | contrastive learning improves critical event prediction in covid-19 patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542449/ https://www.ncbi.nlm.nih.gov/pubmed/34723227 http://dx.doi.org/10.1016/j.patter.2021.100389 |
work_keys_str_mv | AT wanyantingyi contrastivelearningimprovescriticaleventpredictionincovid19patients AT honarvarhossein contrastivelearningimprovescriticaleventpredictionincovid19patients AT jaladankisurajk contrastivelearningimprovescriticaleventpredictionincovid19patients AT zangchengxi contrastivelearningimprovescriticaleventpredictionincovid19patients AT naiknidhi contrastivelearningimprovescriticaleventpredictionincovid19patients AT somanisulaiman contrastivelearningimprovescriticaleventpredictionincovid19patients AT defreitasjessicak contrastivelearningimprovescriticaleventpredictionincovid19patients AT paranjpeishan contrastivelearningimprovescriticaleventpredictionincovid19patients AT vaidakhil contrastivelearningimprovescriticaleventpredictionincovid19patients AT zhangjing contrastivelearningimprovescriticaleventpredictionincovid19patients AT miottoriccardo contrastivelearningimprovescriticaleventpredictionincovid19patients AT wangzhangyang contrastivelearningimprovescriticaleventpredictionincovid19patients AT nadkarnigirishn contrastivelearningimprovescriticaleventpredictionincovid19patients AT zitnikmarinka contrastivelearningimprovescriticaleventpredictionincovid19patients AT azadariful contrastivelearningimprovescriticaleventpredictionincovid19patients AT wangfei contrastivelearningimprovescriticaleventpredictionincovid19patients AT dingying contrastivelearningimprovescriticaleventpredictionincovid19patients AT glicksbergbenjamins contrastivelearningimprovescriticaleventpredictionincovid19patients |