Cargando…
A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542863/ https://www.ncbi.nlm.nih.gov/pubmed/34707579 http://dx.doi.org/10.3389/fmicb.2021.717809 |
_version_ | 1784589517258227712 |
---|---|
author | Uluseker, Cansu Kaster, Krista Michelle Thorsen, Kristian Basiry, Daniel Shobana, Sutha Jain, Monika Kumar, Gopalakrishnan Kommedal, Roald Pala-Ozkok, Ilke |
author_facet | Uluseker, Cansu Kaster, Krista Michelle Thorsen, Kristian Basiry, Daniel Shobana, Sutha Jain, Monika Kumar, Gopalakrishnan Kommedal, Roald Pala-Ozkok, Ilke |
author_sort | Uluseker, Cansu |
collection | PubMed |
description | This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems. |
format | Online Article Text |
id | pubmed-8542863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85428632021-10-26 A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives Uluseker, Cansu Kaster, Krista Michelle Thorsen, Kristian Basiry, Daniel Shobana, Sutha Jain, Monika Kumar, Gopalakrishnan Kommedal, Roald Pala-Ozkok, Ilke Front Microbiol Microbiology This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems. Frontiers Media S.A. 2021-10-11 /pmc/articles/PMC8542863/ /pubmed/34707579 http://dx.doi.org/10.3389/fmicb.2021.717809 Text en Copyright © 2021 Uluseker, Kaster, Thorsen, Basiry, Shobana, Jain, Kumar, Kommedal and Pala-Ozkok. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Uluseker, Cansu Kaster, Krista Michelle Thorsen, Kristian Basiry, Daniel Shobana, Sutha Jain, Monika Kumar, Gopalakrishnan Kommedal, Roald Pala-Ozkok, Ilke A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title_full | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title_fullStr | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title_full_unstemmed | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title_short | A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives |
title_sort | review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542863/ https://www.ncbi.nlm.nih.gov/pubmed/34707579 http://dx.doi.org/10.3389/fmicb.2021.717809 |
work_keys_str_mv | AT ulusekercansu areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kasterkristamichelle areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT thorsenkristian areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT basirydaniel areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT shobanasutha areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT jainmonika areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kumargopalakrishnan areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kommedalroald areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT palaozkokilke areviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT ulusekercansu reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kasterkristamichelle reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT thorsenkristian reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT basirydaniel reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT shobanasutha reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT jainmonika reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kumargopalakrishnan reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT kommedalroald reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives AT palaozkokilke reviewonoccurrenceandspreadofantibioticresistanceinwastewatersandinwastewatertreatmentplantsmechanismsandperspectives |