Cargando…
Safety and Efficacy of a Novel Centrifugal Pump and Driving Devices of the OASSIST ECMO System: A Preclinical Evaluation in the Ovine Model
Background: Extracorporeal membrane oxygenation (ECMO) provides cardiopulmonary support for critically ill patients. Portable ECMO devices can be applied in both in-hospital and out-of-hospital emergency conditions. We evaluated the safety and biocompatibility of a novel centrifugal pump and ECMO de...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542924/ https://www.ncbi.nlm.nih.gov/pubmed/34708051 http://dx.doi.org/10.3389/fmed.2021.712205 |
Sumario: | Background: Extracorporeal membrane oxygenation (ECMO) provides cardiopulmonary support for critically ill patients. Portable ECMO devices can be applied in both in-hospital and out-of-hospital emergency conditions. We evaluated the safety and biocompatibility of a novel centrifugal pump and ECMO device of the OASSIST ECMO System (Jiangsu STMed Technologies Co., Suzhou, China) in a 168-h ovine ECMO model. Methods: The portable OASSIST ECMO system consists of the control console, the pump drive, and the disposable centrifugal pump. Ten healthy sheep were used to evaluate the OASSIST ECMO system. Five were supported on veno-venous ECMO and five on veno-arterial ECMO, each for 168 h. The systemic anticoagulation was achieved by continuous heparin infusion to maintain the activated clotting time (ACT) between 220 and 250 s. The rotary speed was set at 3,200–3,500 rpm. The ECMO configurations and ACT were recorded every 6 hours (h). The free hemoglobin (fHb), complete blood count, and coagulation action test were monitored, at the 6th h and every 24 h after the initiation of the ECMO. The dissection of the pump head and oxygenator were conducted to explore thrombosis. Results: Ten sheep successfully completed the study duration without device-related accidents. The pumps ran stably, and the ECMO flow ranged from 1.6 ± 0.1 to 2.0 ± 0.11 L/min in the V-V group, and from 1.8 ± 0.1 to 2.4 ± 0.14 L/min in the V-A group. The anticoagulation was well-performed. The ACT was maintained at 239.78 ± 36.31 s, no major bleeding or thrombosis was observed during the ECMO run or in the autopsy. 3/5 in the V-A group and 4/5 in the V-V group developed small thrombus in the bearing pedestal. No obvious thrombus formed in the oxygenator was observed. The hemolytic blood damage was not significant. The average fHb was 0.17 ± 0.12 g/L. Considering hemodilution, the hemoglobin, white blood cell, and platelets didn't reduce during the ECMO runs. Conclusions: The OASSIST ECMO system shows satisfactory safety and biocompatibility for the 168-h preclinical evaluation in the ovine model. The OASSIST ECMO system is promising to be applied in clinical conditions in the future. |
---|