Cargando…

Characterization of nuclear pore complex targeting domains in Pom152 in Saccharomyces cerevisiae

Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane dom...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Jacqueline T., Haraczy, Alexandra J., Wilhelm, Christopher M., Belanger, Kenneth D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543022/
https://www.ncbi.nlm.nih.gov/pubmed/34557894
http://dx.doi.org/10.1242/bio.057661
Descripción
Sumario:Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC. Full-length, glycosylation-deficient, and truncated Pom152-GFP chimeras expressed in cells containing endogenous Pom152 localize to both NPCs and cortical endoplasmic reticulum (ER). Expression of Pom152-GFP fusions in pom152Δ cells results in detectable localization at only the NE by full-length and amino-terminal Pom152-GFP fusions, but continued retention at both the NE and ER for a chimera lacking just the carboxy-terminal 377 amino acids. Neither deletion of Pom152 nor its carboxy-terminal glycosylation sites altered the nuclear protein export rate of an Msn5/Kap142 protein cargo. These data narrow the Pom152 region sufficient for NPC localization and provide evidence that alterations in other domains may impact Pom152 targeting or affinity for the NPC.