Cargando…
Robustness of convolutional neural networks to physiological electrocardiogram noise
The electrocardiogram (ECG) is a widespread diagnostic tool in healthcare and supports the diagnosis of cardiovascular disorders. Deep learning methods are a successful and popular technique to detect indications of disorders from an ECG signal. However, there are open questions around the robustnes...
Autores principales: | Venton, J., Harris, P. M., Sundar, A., Smith, N. A. S., Aston, P. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543045/ https://www.ncbi.nlm.nih.gov/pubmed/34689617 http://dx.doi.org/10.1098/rsta.2020.0262 |
Ejemplares similares
-
DCNet: Noise-Robust Convolutional Neural Networks for Degradation Classification on Ancient Documents
por: Arnia, Fitri, et al.
Publicado: (2021) -
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network
por: Ji, Yinsheng, et al.
Publicado: (2019) -
Convolutional neural network optimized by differential evolution for electrocardiogram classification
por: Chen, Shan Wei, et al.
Publicado: (2023) -
Noise Immunity and Robustness Study of Image Recognition Using a Convolutional Neural Network
por: Ziyadinov, Vadim, et al.
Publicado: (2022) -
Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification
por: Fki, Zeineb, et al.
Publicado: (2023)