Cargando…
Optimised deep neural network model to predict asthma exacerbation based on personalised weather triggers
Background – Recently, there have been attempts to develop mHealth applications for asthma self-management. However, there is a lack of applications that can offer accurate predictions of asthma exacerbation using the weather triggers and demographic characteristics to give tailored response to user...
Autores principales: | Haque, Radiah, Ho, Sin-Ban, Chai, Ian, Abdullah, Adina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543171/ https://www.ncbi.nlm.nih.gov/pubmed/34745565 http://dx.doi.org/10.12688/f1000research.73026.1 |
Ejemplares similares
-
Personalisation of Molecular Radiotherapy through Optimisation of Theragnostics
por: Davis, LauraMay, et al.
Publicado: (2020) -
Association between hospitalizations for asthma exacerbation and weather conditions in Qingdao: an ecological study
por: Han, Wei, et al.
Publicado: (2022) -
Advances in the pathogenesis and personalised treatment of paediatric asthma
por: Scotney, Elizabeth, et al.
Publicado: (2023) -
Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System
por: Gao, Yang, et al.
Publicado: (2023) -
Emergency Department Visits for Asthma Exacerbation due to Weather Conditions and Air Pollution in Chuncheon, Korea: A Case-Crossover Analysis
por: Kwon, Jae-Woo, et al.
Publicado: (2016)