Cargando…

MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis

Nonalcoholic fatty liver disease (NAFLD) is a complex type of liver disease that represents an important global health threat. The mechanistic basis of this disease remains incompletely understood. The present study sought to explore whether microRNA (miR)-506-3p served a functional role in the onse...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Liang-Kai, Chen, Jian-Qing, Zheng, Hao, Tao, Yuan-Ping, Yang, Yuan, Xu, Xuan-Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543238/
https://www.ncbi.nlm.nih.gov/pubmed/34707711
http://dx.doi.org/10.3892/etm.2021.10865
_version_ 1784589600055885824
author Hu, Liang-Kai
Chen, Jian-Qing
Zheng, Hao
Tao, Yuan-Ping
Yang, Yuan
Xu, Xuan-Fu
author_facet Hu, Liang-Kai
Chen, Jian-Qing
Zheng, Hao
Tao, Yuan-Ping
Yang, Yuan
Xu, Xuan-Fu
author_sort Hu, Liang-Kai
collection PubMed
description Nonalcoholic fatty liver disease (NAFLD) is a complex type of liver disease that represents an important global health threat. The mechanistic basis of this disease remains incompletely understood. The present study sought to explore whether microRNA (miR)-506-3p served a functional role in the onset and/or progression of NAFLD. To that end, high levels of glucose were used to treat liver cancer cell lines (HepG2 and Huh7) to model hepatic steatosis, and the expression levels of miR-506-3p and its downstream target genes were assessed. The cells of this hepatic steatosis model were transfected with miR-506-3p mimic molecules to explore the effect of miR-506-3p overexpression on cell viability, target gene expression and AMP-activated protein kinase (AMPK) phosphorylation. Via bioinformatics approaches, sirtuin 1 (SIRT1) was identified as a potential miR-506-3p target gene with relevance in NAFLD, and this interaction was confirmed via luciferase reporter assay. In the hepatic steatosis model of the present study, miR-506-3p expression level was significantly increased, whereas SIRT1 mRNA/protein levels and AMPK phosphorylation levels were markedly decreased. Transfection of the cells with miR-506-3p mimics led to significant SIRT1 downregulation, while miR-506-3p inhibitor molecules exhibited the opposite effect, with similar trends observed in the phosphorylation status of AMPK. These results suggested that miR-506-3p can inhibit SIRT1 expression and associated AMPK phosphorylation in HepG2 and Huh7 cells in an in vitro hepatic steatosis model system. These data indicated that the miR-506-3p/SIRT1/AMPK axis may be valuable as a therapeutic target in patients affected by NAFLD.
format Online
Article
Text
id pubmed-8543238
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-85432382021-10-26 MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis Hu, Liang-Kai Chen, Jian-Qing Zheng, Hao Tao, Yuan-Ping Yang, Yuan Xu, Xuan-Fu Exp Ther Med Articles Nonalcoholic fatty liver disease (NAFLD) is a complex type of liver disease that represents an important global health threat. The mechanistic basis of this disease remains incompletely understood. The present study sought to explore whether microRNA (miR)-506-3p served a functional role in the onset and/or progression of NAFLD. To that end, high levels of glucose were used to treat liver cancer cell lines (HepG2 and Huh7) to model hepatic steatosis, and the expression levels of miR-506-3p and its downstream target genes were assessed. The cells of this hepatic steatosis model were transfected with miR-506-3p mimic molecules to explore the effect of miR-506-3p overexpression on cell viability, target gene expression and AMP-activated protein kinase (AMPK) phosphorylation. Via bioinformatics approaches, sirtuin 1 (SIRT1) was identified as a potential miR-506-3p target gene with relevance in NAFLD, and this interaction was confirmed via luciferase reporter assay. In the hepatic steatosis model of the present study, miR-506-3p expression level was significantly increased, whereas SIRT1 mRNA/protein levels and AMPK phosphorylation levels were markedly decreased. Transfection of the cells with miR-506-3p mimics led to significant SIRT1 downregulation, while miR-506-3p inhibitor molecules exhibited the opposite effect, with similar trends observed in the phosphorylation status of AMPK. These results suggested that miR-506-3p can inhibit SIRT1 expression and associated AMPK phosphorylation in HepG2 and Huh7 cells in an in vitro hepatic steatosis model system. These data indicated that the miR-506-3p/SIRT1/AMPK axis may be valuable as a therapeutic target in patients affected by NAFLD. D.A. Spandidos 2021-12 2021-10-11 /pmc/articles/PMC8543238/ /pubmed/34707711 http://dx.doi.org/10.3892/etm.2021.10865 Text en Copyright: © Hu et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Hu, Liang-Kai
Chen, Jian-Qing
Zheng, Hao
Tao, Yuan-Ping
Yang, Yuan
Xu, Xuan-Fu
MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title_full MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title_fullStr MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title_full_unstemmed MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title_short MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis
title_sort microrna-506-3p targets sirt1 and suppresses ampk pathway activation to promote hepatic steatosis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543238/
https://www.ncbi.nlm.nih.gov/pubmed/34707711
http://dx.doi.org/10.3892/etm.2021.10865
work_keys_str_mv AT huliangkai microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis
AT chenjianqing microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis
AT zhenghao microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis
AT taoyuanping microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis
AT yangyuan microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis
AT xuxuanfu microrna5063ptargetssirt1andsuppressesampkpathwayactivationtopromotehepaticsteatosis