Cargando…
Structure-guided steric hindrance engineering of Bacillus badius phenylalanine dehydrogenase for efficient l-homophenylalanine synthesis
BACKGROUND: Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block l-homophenylalanine (l-HPA) given that its sole expense is ammonia and that water...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543943/ https://www.ncbi.nlm.nih.gov/pubmed/34689801 http://dx.doi.org/10.1186/s13068-021-02055-0 |
Sumario: | BACKGROUND: Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block l-homophenylalanine (l-HPA) given that its sole expense is ammonia and that water is the only byproduct. Current issues in this field include a poor catalytic efficiency and a low substrate loading. RESULTS: In this study, we report a structure-guided steric hindrance engineering of PheDH from Bacillus badius to create an enhanced biocatalyst for efficient l-HPA synthesis. Mutagenesis libraries based on molecular docking, double-proximity filtering, and a degenerate codon significantly increased catalytic efficiency. Seven superior mutants were acquired, and the optimal triple-site mutant, V309G/L306V/V144G, showed a 12.7-fold higher k(cat) value, and accordingly a 12.9-fold higher k(cat)/K(m) value, than that of the wild type. A paired reaction system comprising V309G/L306V/V144G and glucose dehydrogenase converted 1.08 M 2-OPBA to l-HPA in 210 min, and the specific space–time conversion was 30.9 mmol g(−1) L(−1) h(−1). The substrate loading and specific space–time conversion are the highest values to date. Docking simulation revealed increases in substrate-binding volume and additional degrees of freedom of the substrate 2-OPBA in the pocket. Tunnel analysis suggested the formation of new enzyme tunnels and the expansion of existing ones. CONCLUSIONS: Overall, the results show that the mutant V309G/L306V/V144G has the potential for the industrial synthesis of l-HPA. The modified steric hindrance engineering approach can be a valuable addition to the current enzyme engineering toolbox. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-021-02055-0. |
---|