Cargando…

Improved SARS-CoV-2 PCR detection and genotyping with double-bubble primers

A new approach for improved RT-PCR is described. It is based on primers designed to form controlled stem–loop and homodimer configurations, hence the name ‘double-bubble’ primers. The primers contain three main regions for efficient RT-PCR: a 3′ short overhang to allow reverse transcription, a stem...

Descripción completa

Detalles Bibliográficos
Autores principales: Ailenberg, Menachem, Kapus, Andras, Rotstein, Ori D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Science Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544493/
https://www.ncbi.nlm.nih.gov/pubmed/34519222
http://dx.doi.org/10.2144/btn-2021-0063
Descripción
Sumario:A new approach for improved RT-PCR is described. It is based on primers designed to form controlled stem–loop and homodimer configurations, hence the name ‘double-bubble’ primers. The primers contain three main regions for efficient RT-PCR: a 3′ short overhang to allow reverse transcription, a stem region for hot start and a template-specific region for PCR amplification. As proof of principle, GAPDH, SARS-CoV-2 synthetic RNA and SARS-CoV-2 virus-positive nasopharyngeal swabs were used as templates. Additionally, these primers were used to positively confirm the N501Y mutation from nasopharyngeal swabs. Evidence is presented that the double-bubble primers offer fast, specific, robust and cost-effective improvement in RT-PCR amplification for detection of gene expression in general and for diagnostic detection and genotyping of SARS-CoV-2 in particular.