Cargando…

Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique

Falls are a major cause of unintentional injuries. Understanding the movements of the body during falls is important to the design of fall prevention and management strategies, including exercise programs, mobility aids, fall detectors, protective gear, and safer environments. Video footage of real-...

Descripción completa

Detalles Bibliográficos
Autores principales: Shishov, Nataliya, Elabd, Karam, Komisar, Vicki, Chong, Helen, Robinovitch, Stephen N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544843/
https://www.ncbi.nlm.nih.gov/pubmed/34695159
http://dx.doi.org/10.1371/journal.pone.0258923
_version_ 1784589902452621312
author Shishov, Nataliya
Elabd, Karam
Komisar, Vicki
Chong, Helen
Robinovitch, Stephen N.
author_facet Shishov, Nataliya
Elabd, Karam
Komisar, Vicki
Chong, Helen
Robinovitch, Stephen N.
author_sort Shishov, Nataliya
collection PubMed
description Falls are a major cause of unintentional injuries. Understanding the movements of the body during falls is important to the design of fall prevention and management strategies, including exercise programs, mobility aids, fall detectors, protective gear, and safer environments. Video footage of real-life falls is increasingly available, and may be used with digitization software to extract kinematic features of falls. We examined the validity of this approach by conducting laboratory falling experiments, and comparing linear and angular positions and velocities measured from 3D motion capture to estimates from Kinovea 2D digitization software based on standard surveillance video (30 Hz, 640x480 pixels). We also examined how Kinovea accuracy depended on fall direction, camera angle, filtering cut-off frequency, and calibration technique. For a camera oriented perpendicular to the plane of the fall (90 degrees), Kinovea position data filtered at 10 Hz, and video calibration using a 2D grid, mean root mean square errors were 0.050 m or 9% of the signal amplitude and 0.22 m/s (7%) for vertical position and velocity, and 0.035 m (6%) and 0.16 m/s (7%) for horizontal position and velocity. Errors in angular measures averaged over 2-fold higher in sideways than forward or backward falls, due to out-of-plane movement of the knees and elbows. Errors in horizontal velocity were 2.5-fold higher for a 30 than 90 degree camera angle, and 1.6-fold higher for calibration using participants’ height (1D) instead of a 2D grid. When compared to 10 Hz, filtering at 3 Hz caused velocity errors to increase 1.4-fold. Our results demonstrate that Kinovea can be applied to 30 Hz video to measure linear positions and velocities to within 9% accuracy. Lower accuracy was observed for angular kinematics of the upper and lower limb in sideways falls, and for horizontal measures from 30 degree cameras or 1D height-based calibration.
format Online
Article
Text
id pubmed-8544843
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-85448432021-10-26 Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique Shishov, Nataliya Elabd, Karam Komisar, Vicki Chong, Helen Robinovitch, Stephen N. PLoS One Research Article Falls are a major cause of unintentional injuries. Understanding the movements of the body during falls is important to the design of fall prevention and management strategies, including exercise programs, mobility aids, fall detectors, protective gear, and safer environments. Video footage of real-life falls is increasingly available, and may be used with digitization software to extract kinematic features of falls. We examined the validity of this approach by conducting laboratory falling experiments, and comparing linear and angular positions and velocities measured from 3D motion capture to estimates from Kinovea 2D digitization software based on standard surveillance video (30 Hz, 640x480 pixels). We also examined how Kinovea accuracy depended on fall direction, camera angle, filtering cut-off frequency, and calibration technique. For a camera oriented perpendicular to the plane of the fall (90 degrees), Kinovea position data filtered at 10 Hz, and video calibration using a 2D grid, mean root mean square errors were 0.050 m or 9% of the signal amplitude and 0.22 m/s (7%) for vertical position and velocity, and 0.035 m (6%) and 0.16 m/s (7%) for horizontal position and velocity. Errors in angular measures averaged over 2-fold higher in sideways than forward or backward falls, due to out-of-plane movement of the knees and elbows. Errors in horizontal velocity were 2.5-fold higher for a 30 than 90 degree camera angle, and 1.6-fold higher for calibration using participants’ height (1D) instead of a 2D grid. When compared to 10 Hz, filtering at 3 Hz caused velocity errors to increase 1.4-fold. Our results demonstrate that Kinovea can be applied to 30 Hz video to measure linear positions and velocities to within 9% accuracy. Lower accuracy was observed for angular kinematics of the upper and lower limb in sideways falls, and for horizontal measures from 30 degree cameras or 1D height-based calibration. Public Library of Science 2021-10-25 /pmc/articles/PMC8544843/ /pubmed/34695159 http://dx.doi.org/10.1371/journal.pone.0258923 Text en © 2021 Shishov et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Shishov, Nataliya
Elabd, Karam
Komisar, Vicki
Chong, Helen
Robinovitch, Stephen N.
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title_full Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title_fullStr Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title_full_unstemmed Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title_short Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
title_sort accuracy of kinovea software in estimating body segment movements during falls captured on standard video: effects of fall direction, camera perspective and video calibration technique
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544843/
https://www.ncbi.nlm.nih.gov/pubmed/34695159
http://dx.doi.org/10.1371/journal.pone.0258923
work_keys_str_mv AT shishovnataliya accuracyofkinoveasoftwareinestimatingbodysegmentmovementsduringfallscapturedonstandardvideoeffectsoffalldirectioncameraperspectiveandvideocalibrationtechnique
AT elabdkaram accuracyofkinoveasoftwareinestimatingbodysegmentmovementsduringfallscapturedonstandardvideoeffectsoffalldirectioncameraperspectiveandvideocalibrationtechnique
AT komisarvicki accuracyofkinoveasoftwareinestimatingbodysegmentmovementsduringfallscapturedonstandardvideoeffectsoffalldirectioncameraperspectiveandvideocalibrationtechnique
AT chonghelen accuracyofkinoveasoftwareinestimatingbodysegmentmovementsduringfallscapturedonstandardvideoeffectsoffalldirectioncameraperspectiveandvideocalibrationtechnique
AT robinovitchstephenn accuracyofkinoveasoftwareinestimatingbodysegmentmovementsduringfallscapturedonstandardvideoeffectsoffalldirectioncameraperspectiveandvideocalibrationtechnique