Cargando…
Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544860/ https://www.ncbi.nlm.nih.gov/pubmed/34695136 http://dx.doi.org/10.1371/journal.pone.0258445 |
_version_ | 1784589905768218624 |
---|---|
author | Laosam, Phanthipha Panpipat, Worawan Yusakul, Gorawit Cheong, Ling-Zhi Chaijan, Manat |
author_facet | Laosam, Phanthipha Panpipat, Worawan Yusakul, Gorawit Cheong, Ling-Zhi Chaijan, Manat |
author_sort | Laosam, Phanthipha |
collection | PubMed |
description | The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40–323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH(•) and ABTS(•+) inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH’s properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative. |
format | Online Article Text |
id | pubmed-8544860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85448602021-10-26 Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments Laosam, Phanthipha Panpipat, Worawan Yusakul, Gorawit Cheong, Ling-Zhi Chaijan, Manat PLoS One Research Article The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40–323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH(•) and ABTS(•+) inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH’s properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative. Public Library of Science 2021-10-25 /pmc/articles/PMC8544860/ /pubmed/34695136 http://dx.doi.org/10.1371/journal.pone.0258445 Text en © 2021 Laosam et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Laosam, Phanthipha Panpipat, Worawan Yusakul, Gorawit Cheong, Ling-Zhi Chaijan, Manat Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title | Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title_full | Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title_fullStr | Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title_full_unstemmed | Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title_short | Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments |
title_sort | porcine placenta hydrolysate as an alternate functional food ingredient: in vitro antioxidant and antibacterial assessments |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544860/ https://www.ncbi.nlm.nih.gov/pubmed/34695136 http://dx.doi.org/10.1371/journal.pone.0258445 |
work_keys_str_mv | AT laosamphanthipha porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments AT panpipatworawan porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments AT yusakulgorawit porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments AT cheonglingzhi porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments AT chaijanmanat porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments |