Cargando…

Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments

The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for...

Descripción completa

Detalles Bibliográficos
Autores principales: Laosam, Phanthipha, Panpipat, Worawan, Yusakul, Gorawit, Cheong, Ling-Zhi, Chaijan, Manat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544860/
https://www.ncbi.nlm.nih.gov/pubmed/34695136
http://dx.doi.org/10.1371/journal.pone.0258445
_version_ 1784589905768218624
author Laosam, Phanthipha
Panpipat, Worawan
Yusakul, Gorawit
Cheong, Ling-Zhi
Chaijan, Manat
author_facet Laosam, Phanthipha
Panpipat, Worawan
Yusakul, Gorawit
Cheong, Ling-Zhi
Chaijan, Manat
author_sort Laosam, Phanthipha
collection PubMed
description The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40–323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH(•) and ABTS(•+) inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH’s properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
format Online
Article
Text
id pubmed-8544860
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-85448602021-10-26 Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments Laosam, Phanthipha Panpipat, Worawan Yusakul, Gorawit Cheong, Ling-Zhi Chaijan, Manat PLoS One Research Article The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand’s pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40–323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH(•) and ABTS(•+) inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH’s properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative. Public Library of Science 2021-10-25 /pmc/articles/PMC8544860/ /pubmed/34695136 http://dx.doi.org/10.1371/journal.pone.0258445 Text en © 2021 Laosam et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Laosam, Phanthipha
Panpipat, Worawan
Yusakul, Gorawit
Cheong, Ling-Zhi
Chaijan, Manat
Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title_full Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title_fullStr Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title_full_unstemmed Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title_short Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments
title_sort porcine placenta hydrolysate as an alternate functional food ingredient: in vitro antioxidant and antibacterial assessments
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544860/
https://www.ncbi.nlm.nih.gov/pubmed/34695136
http://dx.doi.org/10.1371/journal.pone.0258445
work_keys_str_mv AT laosamphanthipha porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments
AT panpipatworawan porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments
AT yusakulgorawit porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments
AT cheonglingzhi porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments
AT chaijanmanat porcineplacentahydrolysateasanalternatefunctionalfoodingredientinvitroantioxidantandantibacterialassessments