Cargando…
MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection
Anomaly detection refers to the identification of cases that do not conform to the expected pattern, which takes a key role in diverse research areas and application domains. Most of existing methods can be summarized as anomaly object detection-based and reconstruction error-based techniques. Howev...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544938/ https://www.ncbi.nlm.nih.gov/pubmed/33326377 http://dx.doi.org/10.1109/TMI.2020.3045295 |
Ejemplares similares
-
Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection
por: Oluwasanmi, Ariyo, et al.
Publicado: (2021) -
OutlierNets: Highly Compact Deep Autoencoder Network Architectures for On-Device Acoustic Anomaly Detection
por: Abbasi, Saad, et al.
Publicado: (2021) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Anomaly detection in images with shared autoencoders
por: Jia, Haoyang, et al.
Publicado: (2023)