Cargando…
Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images
Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifyin...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544939/ https://www.ncbi.nlm.nih.gov/pubmed/33544680 http://dx.doi.org/10.1109/TNNLS.2021.3054746 |
Ejemplares similares
-
A Lightweight CNN Model Based on GhostNet
por: Wang, Zhong, et al.
Publicado: (2022) -
Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model
por: Valdez-Rodríguez, José E., et al.
Publicado: (2022) -
Cognitive Performance in Patients with Systemic Lupus Erythematosus Using the Ped-ANAM
por: de Amorim, Jaqueline Cristina, et al.
Publicado: (2022) -
CodnNet: A lightweight CNN architecture for detection of COVID-19 infection
por: Yang, Jingdong, et al.
Publicado: (2022) -
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
por: Alshazly, Hammam, et al.
Publicado: (2021)