Cargando…
Joint Learning of 3D Lesion Segmentation and Classification for Explainable COVID-19 Diagnosis
Given the outbreak of COVID-19 pandemic and the shortage of medical resource, extensive deep learning models have been proposed for automatic COVID-19 diagnosis, based on 3D computed tomography (CT) scans. However, the existing models independently process the 3D lesion segmentation and disease clas...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544955/ https://www.ncbi.nlm.nih.gov/pubmed/33983881 http://dx.doi.org/10.1109/TMI.2021.3079709 |
Ejemplares similares
-
Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images()
por: Li, Minglei, et al.
Publicado: (2022) -
Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning
por: Ryu, Hwaseong, et al.
Publicado: (2021) -
An Explainable AI driven Decision Support System for COVID-19 Diagnosis using Fused Classification and Segmentation
por: Niranjan, K, et al.
Publicado: (2023) -
Classification of Skin Cancer Lesions Using Explainable Deep Learning
por: Zia Ur Rehman, Muhammad, et al.
Publicado: (2022) -
MultiR-Net: A Novel Joint Learning Network for COVID-19 segmentation and classification
por: Li, Cheng-Fan, et al.
Publicado: (2022)