Cargando…
Interaction-Temporal GCN: A Hybrid Deep Framework For Covid-19 Pandemic Analysis
The Covid-19 pandemic is still spreading around the world and seriously imperils humankind's health. This swift spread has caused the public to panic and look to scientists for answers. Fortunately, these scientists already have a wealth of data—the Covid-19 reports that each country releases,...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545025/ https://www.ncbi.nlm.nih.gov/pubmed/34812421 http://dx.doi.org/10.1109/OJEMB.2021.3063890 |
Ejemplares similares
-
PPA-GCN: A Efficient GCN Framework for Prokaryotic Pathways Assignment
por: Lu, Yuntao, et al.
Publicado: (2022) -
NSCGCN: A novel deep GCN model to diagnosis COVID-19
por: Tang, Chaosheng, et al.
Publicado: (2022) -
kGCN: a graph-based deep learning framework for chemical structures
por: Kojima, Ryosuke, et al.
Publicado: (2020) -
A hybrid deep learning framework for air quality prediction with spatial autocorrelation during the COVID-19 pandemic
por: Zhao, Zixi, et al.
Publicado: (2023) -
HiRAND: A novel GCN semi-supervised deep learning-based framework for classification and feature selection in drug research and development
por: Huang, Yue, et al.
Publicado: (2023)