Cargando…
Attention-RefNet: Interactive Attention Refinement Network for Infected Area Segmentation of COVID-19
COVID-19 pneumonia is a disease that causes an existential health crisis in many people by directly affecting and damaging lung cells. The segmentation of infected areas from computed tomography (CT) images can be used to assist and provide useful information for COVID-19 diagnosis. Although several...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545076/ https://www.ncbi.nlm.nih.gov/pubmed/34033549 http://dx.doi.org/10.1109/JBHI.2021.3082527 |
Ejemplares similares
-
DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images
por: Xie, Feng, et al.
Publicado: (2021) -
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021) -
SA-Net: A scale-attention network for medical image segmentation
por: Hu, Jingfei, et al.
Publicado: (2021) -
MEA-Net: multilayer edge attention network for medical image segmentation
por: Liu, Huilin, et al.
Publicado: (2022) -
Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
por: Pennisi, Andrea, et al.
Publicado: (2022)