Cargando…
Molecular Signatures of Inflammatory Profile and B-Cell Function in Patients with Severe Fever with Thrombocytopenia Syndrome
Dabie bandavirus (severe fever with thrombocytopenia syndrome virus [SFTSV]) induces an immunopathogenic disease with a high fatality rate; however, the mechanisms underlying its clinical manifestations are largely unknown. In this study, we applied targeted proteomics and single-cell transcriptomic...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545090/ https://www.ncbi.nlm.nih.gov/pubmed/33593977 http://dx.doi.org/10.1128/mBio.02583-20 |
Sumario: | Dabie bandavirus (severe fever with thrombocytopenia syndrome virus [SFTSV]) induces an immunopathogenic disease with a high fatality rate; however, the mechanisms underlying its clinical manifestations are largely unknown. In this study, we applied targeted proteomics and single-cell transcriptomics to examine the differential immune landscape in SFTS patient blood. Serum immunoprofiling identified low-risk and high-risk clusters of SFTS patients based on inflammatory cytokine levels, which corresponded to disease severity. Single-cell transcriptomic analysis of SFTS patient peripheral blood mononuclear cells (PBMCs) at different infection stages showed pronounced expansion of B cells with alterations in B-cell subsets in fatal cases. Furthermore, plasma cells in which the interferon (IFN) pathway is downregulated were identified as the primary reservoir of SFTSV replication. This study identified not only the molecular signatures of serum inflammatory cytokines and B-cell lineage populations in SFTSV-induced fatalities but also plasma cells as the viral reservoir. Thus, this suggests that altered B-cell function is linked to lethality in SFTSV infections. |
---|