Cargando…
Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus
Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545110/ https://www.ncbi.nlm.nih.gov/pubmed/33622717 http://dx.doi.org/10.1128/mBio.03288-20 |
_version_ | 1784589952000983040 |
---|---|
author | Gimza, Brittney D. Jackson, Jessica K. Frey, Andrew M. Budny, Bridget G. Chaput, Dale Rizzo, Devon N. Shaw, Lindsey N. |
author_facet | Gimza, Brittney D. Jackson, Jessica K. Frey, Andrew M. Budny, Bridget G. Chaput, Dale Rizzo, Devon N. Shaw, Lindsey N. |
author_sort | Gimza, Brittney D. |
collection | PubMed |
description | Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal. |
format | Online Article Text |
id | pubmed-8545110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85451102021-10-27 Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus Gimza, Brittney D. Jackson, Jessica K. Frey, Andrew M. Budny, Bridget G. Chaput, Dale Rizzo, Devon N. Shaw, Lindsey N. mBio Research Article Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal. American Society for Microbiology 2021-02-23 /pmc/articles/PMC8545110/ /pubmed/33622717 http://dx.doi.org/10.1128/mBio.03288-20 Text en Copyright © 2021 Gimza et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Gimza, Brittney D. Jackson, Jessica K. Frey, Andrew M. Budny, Bridget G. Chaput, Dale Rizzo, Devon N. Shaw, Lindsey N. Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title | Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title_full | Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title_fullStr | Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title_full_unstemmed | Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title_short | Unraveling the Impact of Secreted Proteases on Hypervirulence in Staphylococcus aureus |
title_sort | unraveling the impact of secreted proteases on hypervirulence in staphylococcus aureus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545110/ https://www.ncbi.nlm.nih.gov/pubmed/33622717 http://dx.doi.org/10.1128/mBio.03288-20 |
work_keys_str_mv | AT gimzabrittneyd unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT jacksonjessicak unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT freyandrewm unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT budnybridgetg unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT chaputdale unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT rizzodevonn unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus AT shawlindseyn unravelingtheimpactofsecretedproteasesonhypervirulenceinstaphylococcusaureus |