Cargando…

A Heterogeneously Expressed Gene Family Modulates the Biofilm Architecture and Hypoxic Growth of Aspergillus fumigatus

The genus Aspergillus encompasses human pathogens such as Aspergillus fumigatus and industrial powerhouses such as Aspergillus niger. In both cases, Aspergillus biofilms have consequences for infection outcomes and yields of economically important products. However, the molecular components influenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowalski, Caitlin H., Morelli, Kaesi A., Stajich, Jason E., Nadell, Carey D., Cramer, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545126/
https://www.ncbi.nlm.nih.gov/pubmed/33593969
http://dx.doi.org/10.1128/mBio.03579-20
Descripción
Sumario:The genus Aspergillus encompasses human pathogens such as Aspergillus fumigatus and industrial powerhouses such as Aspergillus niger. In both cases, Aspergillus biofilms have consequences for infection outcomes and yields of economically important products. However, the molecular components influencing filamentous fungal biofilm development, structure, and function remain ill defined. Macroscopic colony morphology is an indicator of underlying biofilm architecture and fungal physiology. A hypoxia-locked colony morphotype of A. fumigatus has abundant colony furrows that coincide with a reduction in vertically oriented hyphae within biofilms and increased low oxygen growth and virulence. Investigation of this morphotype has led to the identification of the causative gene, biofilm architecture factor A (bafA), a small cryptic open reading frame within a subtelomeric gene cluster. BafA is sufficient to induce the hypoxia-locked colony morphology and biofilm architecture in A. fumigatus. Analysis across a large population of A. fumigatus isolates identified a larger family of baf genes, all of which have the capacity to modulate hyphal architecture, biofilm development, and hypoxic growth. Furthermore, introduction of A. fumigatus bafA into A. niger is sufficient to generate the hypoxia-locked colony morphology, biofilm architecture, and increased hypoxic growth. Together, these data indicate the potential broad impacts of this previously uncharacterized family of small genes to modulate biofilm architecture and function in clinical and industrial settings.